为了提高步态识别率,在步态能量图(gait energy image,GEI)基础上,提出了基于小波包分解(waveletpacket decomposition,WPD)和完全主成分分析(two-directional two-dimensional principal component analysis,(2D)2PCA)的步态识别方法....
详细信息
为了提高步态识别率,在步态能量图(gait energy image,GEI)基础上,提出了基于小波包分解(waveletpacket decomposition,WPD)和完全主成分分析(two-directional two-dimensional principal component analysis,(2D)2PCA)的步态识别方法.该方法采用基于人体轮廓的GEI来解决步态数据量过大的问题,并采用WPD和(2D)2PCA进行步态特征提取,解决了已有基于小波变换的步态识别方法中高频分量丢失或维数过高问题.在NLPR步态数据库上对该方法进行了评测,并与经典方法进行了比较.实验结果表明:该方法具有更高的识别率和视角变化的鲁棒性.
针对蚁群聚类在蛋白质相互作用(protein-protein interaction,PPI)网络中进行功能模块检测问题上时间性能的不足,提出一种快速的基于蚁群聚类的PPI网络功能模块检测(fast ant colony clustering for functional module detection,FACC-F...
详细信息
针对蚁群聚类在蛋白质相互作用(protein-protein interaction,PPI)网络中进行功能模块检测问题上时间性能的不足,提出一种快速的基于蚁群聚类的PPI网络功能模块检测(fast ant colony clustering for functional module detection,FACC-FMD)方法.该算法计算每个蛋白质与核心组蛋白质的相似度,根据拾起放下模型进行聚类,得到的初始聚类结果中功能模块之间相似度很小,省去了原始蚁群聚类算法中的合并和过滤操作,缩短了求解时间.同时该算法根据蛋白质的关键性对蚁群聚类中的拾起放下操作做了更严格的约束,以减少拾起放下的次数,加速了聚类的过程.在多个PPI网络上的实验表明:与原始蚁群聚类方法相比,FACC-FMD大幅度提高了时间性能,同时取得了良好的检测质量,而且与近年来的一些经典算法相比在多项性能指标上也具有一定的优势.
暂无评论