手绘草图检索三维模型是目前活跃的研究领域,针对目前流行的检索技术中采用词袋模型时"硬聚类"带来的区分和表达粒度不足的问题,提出了一种新的检索方法:提取草图和模型渲染的视图集的GALIF(Gabor local line-based feature)...
详细信息
手绘草图检索三维模型是目前活跃的研究领域,针对目前流行的检索技术中采用词袋模型时"硬聚类"带来的区分和表达粒度不足的问题,提出了一种新的检索方法:提取草图和模型渲染的视图集的GALIF(Gabor local line-based feature)特征。采用基于"软聚类"--高斯混合模型的费尔舍编码来取代词袋模型,用一种快速有效的流形排序算法来计算图像之间的相似度从而得到结果。与以往计算特征向量之间的欧式距离等仅考虑数据相似度的方法相比,该方法可以从数据集的底层结构去获取语义关系。实验结果表明,本文的方法具有更好的检索准确度和更快的检索速度。
基于光谱预处理及遗传算法(genetic algorithm,GA)法优化波长,再结合偏最小二乘(partial least squares,PLS)法建立面粉中水分的定量分析模型,对比在不同预处理方法下相关系数R^2、校正标准差(root mean square error of calibration,RM...
详细信息
基于光谱预处理及遗传算法(genetic algorithm,GA)法优化波长,再结合偏最小二乘(partial least squares,PLS)法建立面粉中水分的定量分析模型,对比在不同预处理方法下相关系数R^2、校正标准差(root mean square error of calibration,RMSEC)、预测标准偏差(root mean square error of prediction,RMSEP)3个指标,随机选择130份样本建立预处理+GA+PLS定量分析模型,实验结果为R^2从0.955 2提高到0.977 7、RMSEC从0.375 8降低到0.245 3、RMSEP从0.268降低到0.264。结果表明基于光谱预处理结合GA优化波长来定量分析面粉中水分含量是可行的,且准确性和误差度皆优于无优化模型。
模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对...
详细信息
模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对SAA中冷却进度表参数设置进行对比分析。实验依据面粉中灰分含量梯度,随机选取126份样本的近红外光谱建立SAA-PLS模型。结果发现,SAA从2 074个波数优选出70个波数,结合PLS建立的定量模型相关系数为0.976 0,交互验证均方根误差(root mean square error of cross validation,RMSECV)为0.022,预测均方根误差(root mean square error of prediction,RMSEP)为0.030 1,全谱建立的PLS模型相关系数为0.778 5,RMSECV为0.066 6,RMSEP为0.076 8。结果表明,基于SAA优化特征谱区,建立灰分定量模型是可行的,且准确度与稳健性明显优于全谱定量分析模型。
为得到可靠的小麦粉中面筋含量定量分析模型,基于光谱预处理及模拟退火算法(simulated annealing algorithm,SAA)对近红外光谱(near infrared spectroscopy,NIR)进行优化处理。偏最小二乘(partial least squares,PLS)回归用于建立预测模...
详细信息
为得到可靠的小麦粉中面筋含量定量分析模型,基于光谱预处理及模拟退火算法(simulated annealing algorithm,SAA)对近红外光谱(near infrared spectroscopy,NIR)进行优化处理。偏最小二乘(partial least squares,PLS)回归用于建立预测模型,以决定系数R2、校正均方根误差(root mean square error of calibration,RMSEC)、预测均方根误差(root mean square error of prediction,RMSEP)为指标,对比在不同光谱预处理条件下建立的回归模型与光谱预处理结合模拟退火算法优化处理条件下的回归模型。结果表明光谱预处理结合SAA-PLS模型能够有效提高模型的稳定性和预测能力,将R2从0.763 7提高到0.949 1、RMSEC从1.371 2降低到0.589 8、RMSEP从1.450 2降低到0.534 1。结果说明,光谱预处理结合模拟退火算法对光谱进行优化处理是可行的,模型预测能力和稳定性均优于未处理模型和仅进行光谱预处理的模型。
暂无评论