针对视觉SLAM(simultaneous localization and mapping)算法在动态环境下容易出现重定位失败的问题,提出了一种基于自身运动约束的动态SLAM算法。采用YOLOv5s初步区分前景与背景特征点,仅利用背景特征点进行位姿初始化;利用IMU位姿信息...
详细信息
针对视觉SLAM(simultaneous localization and mapping)算法在动态环境下容易出现重定位失败的问题,提出了一种基于自身运动约束的动态SLAM算法。采用YOLOv5s初步区分前景与背景特征点,仅利用背景特征点进行位姿初始化;利用IMU位姿信息不受动态环境影响的特性,计算每个特征点的自身运动约束值;根据背景特征点的特征约束结果设计了动态概率模型,自适应确定当前帧特征点约束的动态阈值,去除动态特征点并更新相机位姿。使用仿真数据集和真实环境数据集进行了实验验证。实验结果表明,在仿真数据集中,该方法能去除沿极线运动的特征点,相较于Dyna-SLAM,在均方根误差和标准差两项指标的提升率为87.81%和83.17%,相较于AirDos提升率分别为51.62%和41.91%。真实动态环境中重定位能力强于Dyna-SLAM,较AirDos无明显精度提升但运行速度提升29.48%。
暂无评论