需求获取和建模是需求工程中的关键步骤,影响后续系统设计与实现.传统的需求获取和建模方法通常由需求提供者、需求分析师等多类干系人共同协作、反复迭代完成,需要耗费大量的人力.如何减轻需求提供者与需求分析师的负担、提高获取和建模的效率有着重要意义.现有工作中有的使用知识库来提供更多知识,以辅助获取或者建模,有的利用自然语言处理等技术对获取或者建模过程进行自动化,但是它们并没有减轻需求提供者的负担.利用大语言模型(large language models,LLMs)的生成能力,提供了一种人机协作的迭代式需求获取和建模框架ChatModeler.具体来说,根据真实世界中需求团队的分工及协作关系,将部分需求提供者、需求分析师等角色的工作由大语言模型承担,而需求提供者只需要进行确认.为大语言模型扮演的各种角色进行了提示词设计,该提示词会随需求的元模型而变化.ChatModeler在7个需求案例上与3种需求模型的自动建模方法进行了14组对比实验,证明了ChatModeler在降低需求提供者的负担和生成高质量需求模型2个方面上的优越性.
基于覆盖率的错误定位(Coverage Based Fault Localization,CBFL)方法旨在通过分析程序执行的结果预测错误信息,是一种行之有效的错误定位方法.然而,CBFL方法中代码覆盖率的独立统计忽略了程序内存在的复杂控制依赖和数据依赖,从而忽视...
详细信息
基于覆盖率的错误定位(Coverage Based Fault Localization,CBFL)方法旨在通过分析程序执行的结果预测错误信息,是一种行之有效的错误定位方法.然而,CBFL方法中代码覆盖率的独立统计忽略了程序内存在的复杂控制依赖和数据依赖,从而忽视了语句间的语义关系,影响错误定位的准确性.该文借助实例重点分析了基于代码覆盖率所得到的错误可疑度与错误代码的表现关系,指出现有CBFL方法的不足是片面地将基于覆盖率的错误可疑度直接作为错误代码判定的依据;提出程序失效规则及基于覆盖向量的覆盖信息分析模型,并在此模型基础之上,指出高可疑代码与错误代码在执行路径上的覆盖一致性,进而提出用以挖掘与高可疑代码相关联的错误代码的频繁集求解方法.以SIR基准程序为实验对象建立的受控实验结果表明,相比之前的研究,文中方法在一定程度上能够改进错误定位结果.
为了解决软件定义网络(software defined networking,SDN)架构面临的安全挑战,针对SDN网络架构中的安全审计环节,将传统网络中的安全审计解决方案与SDN网络集中控制的特性相结合,依托Floodlight控制器设计并实现适用于SDN网络环境的安...
详细信息
为了解决软件定义网络(software defined networking,SDN)架构面临的安全挑战,针对SDN网络架构中的安全审计环节,将传统网络中的安全审计解决方案与SDN网络集中控制的特性相结合,依托Floodlight控制器设计并实现适用于SDN网络环境的安全审计系统,包括安全审计事件的收集、分析、存储、响应等功能.提出一种针对分布式拒绝服务(distributed denial of service,DDo S)攻击的攻击回溯算法对安全审计事件进行追溯,确定出DDo S攻击发起者及僵尸主机集合.同时,采用滑动窗口分割算法从安全审计事件中提取出用户行为序列模式,基于Levenshtein算法计算用户行为序列模式之间的相似度,并根据用户当前行为和历史行为的相似度来判断是否出现可疑的攻击行为.经实验验证,该系统能准确地回溯出DDo S攻击发生时被控的僵尸主机集合及攻击者,并且可以有效地检测出用户攻击行为.
暂无评论