第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文...
详细信息
第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文提出一种基于相关矩阵托普利兹(Toeplitz)特性的信道估计算法。依据信道的相干带宽特性计算信道相关矩阵并保留必要的较低矩阵阶数;基于相关矩阵的Toeplitz特性设计低复杂度的递归求逆算法,并针对加权矩阵乘法的元素重复性将矩阵乘法化简为矩阵点乘,简化加权矩阵运算;同时引入跟踪信噪比变化的缩放补偿因子对计算过程和结果分别进行缩放和补偿。理论分析和仿真结果显示,本文所提算法可在达到优异的信道估计性能条件下,有效降低运算复杂度,并极大降低算法矩阵处理的动态范围。
工业控制系统(Industrial control systems,ICS)在现代工业生产中发挥关键作用,负责监控和控制工业过程,确保高效、安全和稳定的生产.随着工业4.0和智能制造的发展,传统工业控制方法难以应对日益复杂且动态变化的生产环境.深度强化学习(...
详细信息
工业控制系统(Industrial control systems,ICS)在现代工业生产中发挥关键作用,负责监控和控制工业过程,确保高效、安全和稳定的生产.随着工业4.0和智能制造的发展,传统工业控制方法难以应对日益复杂且动态变化的生产环境.深度强化学习(Deep reinforcement learning,DRL)结合了深度学习与强化学习的优势,在工业智能控制领域展现出巨大潜力.本文综述了DRL在工业智能控制中的应用现状和研究进展.首先介绍了DRL的基本原理及相关算法,并简述工业控制的背景,分析智能控制的应用需求与现存挑战.随后,详细综述了DRL在工业领域的应用,并对当前研究进行了总结,最后对未来研究方向提出了展望.
暂无评论