酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number prediction network using hierarchical features and global features,ECPN-HFGF)。该方法首先通过残差网络提取蛋白质序列通用特征,并通过层级特征提取模块和全局特征提取模块进一步提取蛋白质序列的层级特征和全局特征,之后结合两种特征信息的预测结果,采用多任务学习框架,实现酶EC编号的精确预测。计算实验结果表明,ECPN-HFGF方法在蛋白质序列EC编号预测任务上性能最佳,宏观F1值和微观F1值分别达到95.5%和99.0%。ECPN-HFGF方法能有效结合蛋白质序列的层级特征和全局特征,快速准确预测蛋白质序列EC编号,比当前常用方法预测精确度更高,能够为酶学研究和酶工程应用的发展提供一种高效的思路和方法。
该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网...
详细信息
该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网络和DenseNet121网络为特征提取网络,以提升模型特征提取能力,其次引入结合标签平滑策略的焦点损失函数以加强模型对识别困难样本的关注。经测试,所提模型的识别准确率为99.13%,平均精度均值为98.47%。消融试验表明两项改进分别使模型平均精度均值提高了7.99和3.15个百分点。对比试验结果表明,DEFL模型平均精度均值较于ResNet50、Inception V3、ResNeXt模型以及分别融合这3种模型的EfficientNet-B0模型分别高出14.53、13.17、14.61、 6.4、 7.71以及8.91个百分点,模型规模分别小18.73、 7.7、 12.2、 83.62、 69.6以及60.09MB。Grad-CAM(gradient-weighted class activation mapping)热力图可视化结果表明所提模型重点关注了叶片病变区域。UMAP(uniform manifold approximation and projection)特征降维可视化结果表明所提模型提取的特征更具区分度。实际应用验证取得了97.73%的总体准确率以及95.82%的平均精度均值。综上,该研究提出的DEFL模型能够为苹果病害防治提供有效参考。
北京地区珍稀鸟类的保护对维护当地生物多样性具有重要意义。随着人工智能技术的发展,利用深度学习技术自动识别鸟类成为鸟类调查保护的重要手段。实际鸟类图像存在背景复杂以及相近科属鸟类具有外观相似等特点,导致模型识别精度不佳。针对以上问题,本文提出一种基于TC-YOLO模型的鸟类识别方法。首先,为解决鸟类识别中复杂背景导致的漏检问题,本文方法结合CARAFE(content-aware reassembly of features)机制,自适应生成不同特征点所对应的上采样核,在更大的感受野内聚合上下文语义信息,有效聚焦鸟类前景区域。其次,为解决鸟类识别中相似外观导致的误检问题,本文方法引入TSCODE(task-specificcontextdecoupling)解耦定位和分类任务,通过获取多层级特征图的信息以回归目标边界,并利用包含底层纹理和高层语义的特征进行物种分类,进而提高模型的鸟类识别精度。最后,本文开展对比实验以验证模型的性能。实验结果表明,TC-YOLO模型的平均精度均值在包含北京地区28种国家一级保护鸟类的自建数据集Beijing-28和鸟类公开数据集CUB200-2011上分别达到78.7%和75.3%,均优于已有方法,而且在公开数据集MS COCO上验证了TC-YOLO模型拥有较强的泛化性。本文提出的TC-YOLO模型对背景复杂或外观相似的鸟类图像都能有效识别,漏检率和误检率较低,能够为鸟类保护提供重要技术支撑。
暂无评论