工业控制系统(Industrial control systems,ICS)在现代工业生产中发挥关键作用,负责监控和控制工业过程,确保高效、安全和稳定的生产.随着工业4.0和智能制造的发展,传统工业控制方法难以应对日益复杂且动态变化的生产环境.深度强化学习(...
详细信息
工业控制系统(Industrial control systems,ICS)在现代工业生产中发挥关键作用,负责监控和控制工业过程,确保高效、安全和稳定的生产.随着工业4.0和智能制造的发展,传统工业控制方法难以应对日益复杂且动态变化的生产环境.深度强化学习(Deep reinforcement learning,DRL)结合了深度学习与强化学习的优势,在工业智能控制领域展现出巨大潜力.本文综述了DRL在工业智能控制中的应用现状和研究进展.首先介绍了DRL的基本原理及相关算法,并简述工业控制的背景,分析智能控制的应用需求与现存挑战.随后,详细综述了DRL在工业领域的应用,并对当前研究进行了总结,最后对未来研究方向提出了展望.
由于工业控制系统(industrial control system,ICS)与物理环境紧密联系,其特有的序列攻击可通过将合法的操作注入到操作序列中的不合理位置上,迫使ICS进入异常状态,损毁设备,甚至破坏生态环境.目前,针对序列攻击检测的研究基本上是从信...
详细信息
由于工业控制系统(industrial control system,ICS)与物理环境紧密联系,其特有的序列攻击可通过将合法的操作注入到操作序列中的不合理位置上,迫使ICS进入异常状态,损毁设备,甚至破坏生态环境.目前,针对序列攻击检测的研究基本上是从信息流中提取操作序列进行检测,易受错误、虚假数据等情况的影响,导致检测精度受到限制.针对该问题,充分考虑ICS的操作与物理环境的相互依赖性,提出一种双流融合的工业控制异常检测机制,从物理环境中实时提取工业控制设备的状态信息组成设备状态流,并将其与信息流相融合,从操作次序和时序2个维度检测操作序列是否正常.同时利用设备状态流信息识别操作间隔中的工业控制设备的异常状态,提升异常检测范围和对操作时序异常的检测精度.实验结果表明:该方法能有效地识别序列攻击和部分工业控制设备的异常状态.
暂无评论