在交通场景中采用一些预警措施能够有效地减少交通事故发生。例如,对车辆轨迹进行跟踪并预测车辆的驾驶行为,就是一个常用的预警方法。在对车辆进行跟踪的过程中,数据关联是很重要的部分,它可以对车辆的观测点和轨迹进行关联,从而更新车辆的轨迹,完成跟踪过程。在此背景下,提出了一种新的数据关联算法,即k近邻联合概率数据关联算法(k Nearest Neighbor-Joint Probability Data Association,kNN-JPDA)。实验结果表明,该算法能够较好地解决在交通场景下车辆数据的数据关联问题,在精度以及运行效率方面都有所提高。
针对在轨卫星异常检测中现存的异常定义单一、检测流程不规范不灵活的问题,提出一种基于长短期记忆(Long-Short Term Memory,LSTM)网络和多种异常定义的卫星异常检测方法。基于某在轨卫星实测电源遥测数据,首先进行卫星时序数据预处理,...
详细信息
针对在轨卫星异常检测中现存的异常定义单一、检测流程不规范不灵活的问题,提出一种基于长短期记忆(Long-Short Term Memory,LSTM)网络和多种异常定义的卫星异常检测方法。基于某在轨卫星实测电源遥测数据,首先进行卫星时序数据预处理,随后以LSTM为示例算法对数据的"正常值"进行预测,最后分别以测试数据均值的标准差、预测结果均值的标准差和非参数动态阈值作为异常定义,进行异常的联合投票检测,检测流程可容纳丰富的预测算法和异常定义,且流程模块间耦合度低。仿真结果表明,LSTM模型预测结合多异常定义的联合投票机制能有效提升异常点检测的性能。
暂无评论