双框架变速率控制力矩陀螺(Double-gimbaled variable-speed control moment gyroscope,DGVSCMG)是航天器重要姿态执行机构。它由内外框架速率伺服系统和转速可变的高速转子组成,有飞轮和控制力矩陀螺(Control moment gyroscope,CMG)两...
详细信息
双框架变速率控制力矩陀螺(Double-gimbaled variable-speed control moment gyroscope,DGVSCMG)是航天器重要姿态执行机构。它由内外框架速率伺服系统和转速可变的高速转子组成,有飞轮和控制力矩陀螺(Control moment gyroscope,CMG)两种工作模式。在两种工作模式下,框架伺服系统都会受到不匹配干扰,降低速率伺服性能,影响DGVSCMG的输出力矩精度,需要加以抑制。为了提高框架系统抗扰性能,并保证系统角速率伺服精度,提出一种基于干扰观测器(Disturbance observer,DO)与状态反馈的解耦控制方法。在对DGVSCMG框架系统的不匹配扰动建模与分析的基础上,利用鲁棒控制思想设计控制器与干扰观测器参数,并对全局系统进行了稳定性分析。仿真和试验结果表明,所提出的方法可有效抑制双框架伺服系统干扰,并满足DGVSCMG框架系统的性能要求。
研究了采用双框架控制力矩陀螺(Double Gimbaled Control Momentum Gyroscope,DGCMG)的敏捷卫星姿态/角动量联合控制问题,针对DGCMG的饱和奇异问题,提出了基于Lyapunov的姿态/角动量联合控制方法。首先,建立了采用两个平行构型DGCMG的...
详细信息
研究了采用双框架控制力矩陀螺(Double Gimbaled Control Momentum Gyroscope,DGCMG)的敏捷卫星姿态/角动量联合控制问题,针对DGCMG的饱和奇异问题,提出了基于Lyapunov的姿态/角动量联合控制方法。首先,建立了采用两个平行构型DGCMG的卫星姿态动力学模型,然后根据陀螺的力矩方程,通过可视化分析得出该构型只有内部隐奇异和饱和奇异两类奇异。隐奇异可以通过操纵律进行避免,而饱和奇异只能通过卸载方式来解决。为了避免采用推力器或磁力矩器等卸载方式带来的问题,设计了连续管理角动量的姿态/角动量联合控制器。此外,为了缩短系统的稳定时间,采用Sigmoid函数对控制器的参数选取进行了改进。该控制器完成敏捷卫星快速机动快速稳定任务的同时,还能连续调节角动量,达到姿态控制和角动量管理的折中。数值仿真结果验证了控制器的有效性。
暂无评论