基于1980—2015年的SODA(Simple Ocean Data Assimilation)数据,采用绝对梯度方法提取了海洋锋信息,分析了日本海锋区的空间分布特征、锋轴线位置和锋出现频率,研究了日本海温度锋、盐度锋的分布特征和季节变化规律。结果表明:日本海温...
详细信息
基于1980—2015年的SODA(Simple Ocean Data Assimilation)数据,采用绝对梯度方法提取了海洋锋信息,分析了日本海锋区的空间分布特征、锋轴线位置和锋出现频率,研究了日本海温度锋、盐度锋的分布特征和季节变化规律。结果表明:日本海温度锋总体上呈SW—NE走向,季节变化特征显著;锋轴线没有随季节变化发生明显摆动,但随着深度的增加向日本沿岸移动。盐度锋季节性变化规律显著,但轴线位置相对稳定;在整体空间分布上和季节变化上均与温度锋截然不同;整个盐度锋可分为对马海峡锋和日本海北部锋两部分,其中对马海峡锋位于对马海峡附近,具有和当地温度锋相同的特征,日本海北部锋位于日本海最北部,沿着俄罗斯海岸分布。
基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和...
详细信息
基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和后期(2—5月)为一致的南向(北向)流动;而6—8月EICC呈3段式分布,与另外两个时间段明显不同,表现为9°N以南、16°N以北区域的南向流动和9°—16°N区域的北向流动。前人研究认为印度东海岸的局地风应力是EICC的主要机制,本研究发现除局地风应力外,来自孟加拉湾中部的艾克曼抽吸(EkmanPumping)在全年也发挥着重要作用,并在2—5月(10—12月)驱动EICC的北向(南向)流动,而局地风应力则在10—12月有利于EICC的南向流动。EICC是孟加拉湾低盐水向赤道东印度洋和阿拉伯海输运的一个因素,在海盆间的热盐交换上发挥着重要作用。EICC的热输运在6—12月(2—5月)有利于(不利于)湾内温度的升高;盐输运则在全年都有利于孟加拉湾内盐度的增加。此外,EICC的一致南向(北向)流动以及3段式结构促进了湾内热盐的再分配,对于维持北印度洋的热量和盐度收支平衡具有重要作用。
暂无评论