联邦学习和群智学习等协作学习技术,能够在保护数据隐私的条件下充分利用分布在各地的分布式数据深度挖掘数据中所蕴含的知识,拥有非常广阔的应用前景,尤其是在强调隐私惯例和道德约束的医疗健康领域.任何协作工作都需要选择可靠的参与方,协作学习中全局模型的性能在很大程度上取决于参与方的选择.然而,现有研究在选择参与方时都没有对不同机构医疗数据中存在的异质性加以直接关注.导致包含稳定性在内的全局模型的性能难以得到保障.提出了从信誉的角度尝试探索求解该问题.以迭代协作学习的方式尽可能挑选出具有良好信誉的参与方进行协作学习,以获得稳定可靠的高性能全局模型.首先,提出了一个描述医疗机构数据质量的AI信誉值指标AMP(AI medical promise),以帮助其在医疗领域中形成良好的AI生态.其次,建立了一个基于后向选择的迭代协作学习(colback-learning)框架.在单次协作学习任务中,利用后向选择方法以多项式时间复杂度迭代计算出性能良好且稳定的全局模型,完成AMP计算和积累.在AMP信誉值计算中,制定了一个综合考虑全局性能指标的评分函数,以针对医疗领域更有效地指导全局模型的训练.最后,使用真实医疗数据模拟多样化的协作学习场景.实验表明,colback-learning能够选择可靠参与方训练得到性能良好的全局模型,模型的性能稳定性比现有最好的参与方选择方法提高了1.3~6倍.全局模型的可解释性与集中式学习保持了较高的一致性.
ATPG(automatic test pattern generation)是VLSI(very large scale integration circuits)电路测试中非常重要的技术,它的好坏直接影响测试成本与开销.然而现有的并行ATPG方法普遍存在负载不均衡、并行策略单一、存储开销大和数据局部...
详细信息
ATPG(automatic test pattern generation)是VLSI(very large scale integration circuits)电路测试中非常重要的技术,它的好坏直接影响测试成本与开销.然而现有的并行ATPG方法普遍存在负载不均衡、并行策略单一、存储开销大和数据局部性差等问题.由于图计算的高并行度和高扩展性等优点,快速、高效、低存储开销和高可扩展性的图计算系统可能是有效支持ATPG的重要工具,这将对减少测试成本显得尤为重要.本文将对图计算在组合ATPG中的应用进行探究;介绍图计算模型将ATPG算法转化为图算法的方法;分析现有图计算系统应用于ATPG面临的挑战;提出面向ATPG的单机图计算系统,并从基于传统架构的优化、新兴硬件的加速和基于新兴存储器件的优化几个方面,对图计算系统支持ATPG所面临的挑战和未来研究方向进行了讨论.
暂无评论