ATPG(automatic test pattern generation)是VLSI(very large scale integration circuits)电路测试中非常重要的技术,它的好坏直接影响测试成本与开销.然而现有的并行ATPG方法普遍存在负载不均衡、并行策略单一、存储开销大和数据局部...
详细信息
ATPG(automatic test pattern generation)是VLSI(very large scale integration circuits)电路测试中非常重要的技术,它的好坏直接影响测试成本与开销.然而现有的并行ATPG方法普遍存在负载不均衡、并行策略单一、存储开销大和数据局部性差等问题.由于图计算的高并行度和高扩展性等优点,快速、高效、低存储开销和高可扩展性的图计算系统可能是有效支持ATPG的重要工具,这将对减少测试成本显得尤为重要.本文将对图计算在组合ATPG中的应用进行探究;介绍图计算模型将ATPG算法转化为图算法的方法;分析现有图计算系统应用于ATPG面临的挑战;提出面向ATPG的单机图计算系统,并从基于传统架构的优化、新兴硬件的加速和基于新兴存储器件的优化几个方面,对图计算系统支持ATPG所面临的挑战和未来研究方向进行了讨论.
联邦学习(federated learning,FL)是一种以保护客户隐私数据为中心的分布式处理网络,为解决隐私泄露问题提供了前景良好的解决方案.然而,FL的一个主要困境是高度非独立同分布(non-independent and identically distributed,non-IID)的...
详细信息
联邦学习(federated learning,FL)是一种以保护客户隐私数据为中心的分布式处理网络,为解决隐私泄露问题提供了前景良好的解决方案.然而,FL的一个主要困境是高度非独立同分布(non-independent and identically distributed,non-IID)的数据会导致全局模型性能很差.尽管相关研究已经探讨了这个问题,但本文发现当面对non-IID数据、不稳定的客户端参与以及深度模型时,现有方案和标准基线FedAvg相比,只有微弱的优势或甚至更差,因此严重阻碍了FL的隐私保护应用价值.为解决这个问题,本文提出了一种对non-IID数据鲁棒的优化方案:FedUp.该方案在保留FL隐私保护特点的前提下,进一步提升了全局模型的泛化鲁棒性.FedUp的核心思路是最小化全局经验损失函数的上限来保证模型具有低的泛化误差.大量仿真实验表明,FedUp显著优于现有方案,并对高度non-IID数据以及不稳定和大规模客户端的参与具有鲁棒性.
暂无评论