城市道路短时车速预测是智能交通系统中的一个重要组成部分,也是城市道路交通信号灯控制、公交调度、出行线路搜索等具体应用任务的基础.目前这方面的研究热点多是使用图卷积神经网络捕获空间特征,再使用直接的线性拼接方法进行特征处理,在准确度上有不足.针对短时车速预测的高准确性要求,提出一种融合图注意力网络、门控循环单元和天气权重因子的深度学习预测模型(Graph Attention Network Based with Weather Weight,W2-GAT).其中,图注意力网络利用注意力机制捕获城市道路空间信息,门控循环单元用于提取车速时间特征,重点关注待预测点周边的路面车速情况;在特征处理方面,将天气因素作为可变权重超参数与具体的道路车速特征进行融合,提高预测的准确性.实验结果表明,和现有模型相比,W2-GAT模型预测结果的均方根误差平均降低7.5%,准确率平均提升4%,能够较好地反映实际路面情况下未来短时的车速特征,为具体应用提供数据支撑.
移动边缘计算(Mobile Edge Computing,MEC)是一种利用靠近移动设备的边缘节点提供的计算能力,来提升性能的前沿技术。现有的一些先进的计算卸载方法,已能够支持在MEC环境中基于函数粒度进行动态卸载。函数即服务(Function as a Service,...
详细信息
移动边缘计算(Mobile Edge Computing,MEC)是一种利用靠近移动设备的边缘节点提供的计算能力,来提升性能的前沿技术。现有的一些先进的计算卸载方法,已能够支持在MEC环境中基于函数粒度进行动态卸载。函数即服务(Function as a Service,FaaS)作为无服务架构的一种经典范式,提供了一种在函数粒度上构建和拓展应用程序的新方式。相比传统的方式,FaaS提供了理想的资源弹性。OpenFaaS作为当下流行的开源FaaS项目,为FaaS平台的搭建提供了良好的基础。将先进的计算卸载方法与FaaS解决方案(OpenFaaS)进行整合,是有意义且具有挑战的。为此,文中设计并实现了一个基于OpenFaaS的多边缘管理框架,该框架实现了对多个边缘上OpenFaaS的搭建与状态管理。同时,对于需要部署的函数,将其重构并部署到OpenFaaS上,在运行时能够灵活地在多个OpenFaaS间调度函数执行。针对5个实际的Java智能应用对该框架进行了评估,结果表明该框架可以有效管理多个边缘,且与本地运行相比,该框架平均可节省10.49%~49.36%的响应时间。
暂无评论