滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。
为了在社交网络中选择高价值代言人以达到尽可能好的移动优惠券投放效果,首先,根据粉丝数量和活跃状态对代言人社会传播能力进行建模,并利用移动优惠券类型的偏好程度和移动优惠券转发率对代言人个体分享意愿进行建模;然后,基于社会传播能力和个体分享意愿提出代言人价值的概念,设计代言人价值排序算法(endorser value rank algorithm);接着,在考虑代言人价值的基础上,针对企业利润和代言人收益最大化的多目标优化问题,建立移动优惠券投放模型,并设计基于遗传算法的HFNSGA算法,据此实现社交网络中基于代言人价值的移动优惠券投放;最后,通过在GitHub上的真实用户数据集对EVRank算法进行实验.实验结果表明,EVRank算法在准确率和匹配率上均优于其他相关算法,同时,算例分析表明,HFNSGA算法不仅可有效地求解高维多目标优化问题,且其解集有较好的分布性和均匀性,能够有效指导企业进行移动优惠券投放决策.
暂无评论