随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并...
详细信息
随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并且重点关注了正交时频空(Orthogonal Time Frequency Space,OTFS)信号。OTFS信号具备实现无线通信与雷达感知一体化的潜力。然而,分数多普勒会抬高OTFS多普勒旁瓣,引起多普勒弥散效应,不仅在通信数据与通信数据之间、通信数据与雷达数据之间产生严重干扰,还将导致微弱目标被强目标旁瓣淹没,进而影响雷达探测概率和通信信道估计精度,恶化整体性能。针对分数多普勒导致的OTFS性能下降问题,提出了基于原型滤波器的OTFS通感一体化信号设计方法。通过原型滤波器调理多普勒旁瓣,在不显著损失多普勒分辨率的同时,抑制多普勒弥散效应,提升检测概率,降低误码率。针对OTFS互相关匹配滤波信道估计算法计算复杂度高等问题,进一步提出了利用恒虚警率(Constant False Alarm Rate,CFAR)检测进行信道估计的思路,在降低计算复杂度的同时,稳健检测出了同一时延、不同多普勒的多个目标,保障了信道估计和目标检测性能。依据理论分析和仿真实验可知,本文可将分数多普勒条件下的通信误码率降低2个数量级。
随着5G乃至未来6G无线通信技术的发展,无线通信设备数量呈现爆炸式增长趋势。与之矛盾的是,电磁频谱环境日趋拥堵,接近枯竭的传统通信频段已无法满足激增的业务需求。在此背景下,面向雷达与通信的频谱共享的一体化信号引起了工业界和学术界的极大关注。然而,在匹配滤波框架下,一体化信号无法兼顾雷达和通信性能。通信信息势必会在雷达模糊函数中产生高旁瓣和伪峰。为此,部分学者基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)共享信号,提出将高旁瓣和伪峰外推至雷达观测窗口外的失配处理方法,用以兼顾雷达模糊性能。然而,该方法会产生信噪比损失,且信噪比损失随观测窗口增大而增大。鉴于此,本文提出融合失配处理和最小均方(Least Mean Square,LMS)滤波的算法。通过LMS和失配处理的深度融合,可突破信噪比损失与观测窗口宽度之间的约束,进而能在不减小观测范围的条件下降低信噪比损失,或在相同信噪比损失下大幅提升观测范围。
暂无评论