基于空气质量数据、天气图、常规地面气象观测数据、秒探空资料以及高分辨率的降水数据,剖析了2015年12月19—27日发生在我国东部地区的一次大范围重度污染过程的特征及成因.结果表明,此次污染过程中,我国东部地区主要受到东路冷高压、均压场以及西路冷高压的影响,在东路冷空气及均压场的影响下,BTH(Beijing-Tianjin-Hebei)地区污染物不断累积,西路冷空气影响下污染物浓度开始降低,YRD(Yangtze River Delta)地区在稳定的均压场下污染物不断累积.污染期间,BTH及YRD近地层均有逆温现象发生,且逆温层越厚、强度越大,污染越重.此外,较低的近地面风速、较高的相对湿度,亦不利于污染物的扩散稀释,导致此次重度污染事件的发生和持续.YRD地区在重度污染发生时,有降水现象发生,导致YRD地区PM2.5浓度呈现波动性变化.
为了将地形地貌带来的误差进行修正,提高闪电的探测效率和定位精度,基于二维时域有限差分法(finite difference time domain,FDTD),构建了真实地形下的雷电电磁波传播模型,研究了海南地区地形对雷电电磁波传播的影响,然后提出了一种修...
详细信息
为了将地形地貌带来的误差进行修正,提高闪电的探测效率和定位精度,基于二维时域有限差分法(finite difference time domain,FDTD),构建了真实地形下的雷电电磁波传播模型,研究了海南地区地形对雷电电磁波传播的影响,然后提出了一种修正闪电定位误差的方法即不同步长的地形包络和时间补偿法。模拟结果表明:山地地形会明显改变切向磁场的波形峰值大小和上升沿时间,与平坦地表情况相比,切向磁场波形峰值变化最大的减小了38%,上升沿时间增加范围在1~3μs,峰值到达时间也滞后于平地情况,而经过滤波处理,磁场峰值减小,波形变陡,上升沿时间变短;对于逐峰法,雷击点在真实地形路径下定位误差相比平地明显增大很多;而对于互相关算法,真实地形路径下定位误差比平地情况下大,但相差不大,相比逐峰法定位误差明显大很多;总体来说,使用5 km包络修订效果较好,定位误差都在百米量级内,相比较其他算法闪电定位精度有很大提高。
笔者选取了2018年8月3日发生在南京地区的一次正地闪放电过程,利用6站同步的VLF/LF(甚低频/低频)三维闪电探测数据,重点分析了不同频段的地闪回击脉冲波形的定位结果差异性。首先,针对这次地闪回击的原始时域波形,利用巴特沃斯滤波器进行了回击频域信号的任意提取,分别为10 kHz~50 k Hz、10 k Hz~100 kHz、10 kHz~200 kHz、10 kHz~300 kHz、10 kHz~400 kHz、10 k Hz~500 kHz,从而得到不同频段的回击时域波形。然后,基于上述不同频段的地闪回击时域波形,分别利用互相关、逐峰法、10%峰值法和50%峰值法这4种最常用的TOA(time of arrival)时差定位方法,对比分析这4种不同时间差获取的定位结果的差异性。结果表明:如果以探测站获取的原始波形数据得到的位置作为参考,则利用互相关法和10%峰值法在上述不同频段内的定位结果距离参考位置基本比较接近,互相关法定位结果更优;50%峰值法和逐峰法的定位效果总体上比互相关法和10%峰值法要差一些。
利用南京地区VLF/LF(甚低频/低频)三维雷电实时探测网探测到的2018年7月26日14时的一次正地闪和2018年8月3日14时的一次负地闪数据,对闪电不同放电阶段的频谱特征进行了详细的对比分析。初步结论如下:1)从两次闪电的三维通道结果可以看出,这两次闪电都具有3次回击,同时从脉冲辐射源位置看出,所有的地闪回击放电过程基本是沿着相同通道闪击到地面;2)正地闪和负地闪的云内放电过程的频谱是相似的,主要集中在40 k Hz以上;3)正地闪和负地闪继后回击之前的箭式先导频谱集中在100 kHz以上,不同极性的箭式先导频谱几乎没有区别,但其比云内放电过程辐射频段要高很多;4)正地闪和负地闪的回击过程频谱相似,主要集中在20 kHz以下,并且继后回击的高频分量比首次回击少。
暂无评论