本文通过改变三维强风暴动力—电耦合数值模式中电场参量的引入条件,将电场带入积云运动方程及水凝物下落末速中,模拟比较了有无电场影响下模拟云的主要差异。在考虑电场的作用下,由于初期电活动并不剧烈,降水强度与云内风速变化较小;随着云中起电活动的增强,考虑电场影响的模拟云内上升、下沉风速均有所增加,对应时段的降水强度有明显起伏,但累计液态与固态降水量增加微弱;同时,闪电数目增多,闪电发生得更早,持续的时间更长,电场的影响是不可忽视的。模拟发现:雷暴成熟时期,由于电场力的作用,雹粒子瞬时落速变化的极值均超过10 m s^-1,霰粒子瞬时落速变化极值也超过了7 m s^-1。但强电场的区域较小,粒子下落时经过强电场区域的时间较短,所以落速极值变化不大,相比之下电场力对半径较小粒子的下落末速的瞬时改变更显著。电场通过对粒子下落速度的影响,改变了水凝物粒子主要源项的生成率,增加雨滴、冰晶粒子的生成率,减小霰、雹粒子的生成率,调整了三相水凝物粒子的时空分布,使云中水汽总量增加9%,释放潜热增加7%,为云体的进一步发展提供了内能。
基于空气质量数据、天气图、常规地面气象观测数据、秒探空资料以及高分辨率的降水数据,剖析了2015年12月19—27日发生在我国东部地区的一次大范围重度污染过程的特征及成因.结果表明,此次污染过程中,我国东部地区主要受到东路冷高压、均压场以及西路冷高压的影响,在东路冷空气及均压场的影响下,BTH(Beijing-Tianjin-Hebei)地区污染物不断累积,西路冷空气影响下污染物浓度开始降低,YRD(Yangtze River Delta)地区在稳定的均压场下污染物不断累积.污染期间,BTH及YRD近地层均有逆温现象发生,且逆温层越厚、强度越大,污染越重.此外,较低的近地面风速、较高的相对湿度,亦不利于污染物的扩散稀释,导致此次重度污染事件的发生和持续.YRD地区在重度污染发生时,有降水现象发生,导致YRD地区PM2.5浓度呈现波动性变化.
笔者选取了2018年8月3日发生在南京地区的一次正地闪放电过程,利用6站同步的VLF/LF(甚低频/低频)三维闪电探测数据,重点分析了不同频段的地闪回击脉冲波形的定位结果差异性。首先,针对这次地闪回击的原始时域波形,利用巴特沃斯滤波器进行了回击频域信号的任意提取,分别为10 kHz~50 k Hz、10 k Hz~100 kHz、10 kHz~200 kHz、10 kHz~300 kHz、10 kHz~400 kHz、10 k Hz~500 kHz,从而得到不同频段的回击时域波形。然后,基于上述不同频段的地闪回击时域波形,分别利用互相关、逐峰法、10%峰值法和50%峰值法这4种最常用的TOA(time of arrival)时差定位方法,对比分析这4种不同时间差获取的定位结果的差异性。结果表明:如果以探测站获取的原始波形数据得到的位置作为参考,则利用互相关法和10%峰值法在上述不同频段内的定位结果距离参考位置基本比较接近,互相关法定位结果更优;50%峰值法和逐峰法的定位效果总体上比互相关法和10%峰值法要差一些。
利用南京地区VLF/LF(甚低频/低频)三维雷电实时探测网探测到的2018年7月26日14时的一次正地闪和2018年8月3日14时的一次负地闪数据,对闪电不同放电阶段的频谱特征进行了详细的对比分析。初步结论如下:1)从两次闪电的三维通道结果可以看出,这两次闪电都具有3次回击,同时从脉冲辐射源位置看出,所有的地闪回击放电过程基本是沿着相同通道闪击到地面;2)正地闪和负地闪的云内放电过程的频谱是相似的,主要集中在40 k Hz以上;3)正地闪和负地闪继后回击之前的箭式先导频谱集中在100 kHz以上,不同极性的箭式先导频谱几乎没有区别,但其比云内放电过程辐射频段要高很多;4)正地闪和负地闪的回击过程频谱相似,主要集中在20 kHz以下,并且继后回击的高频分量比首次回击少。
暂无评论