本文基于WRF模式研究了2015年5月16~17日广东西南地区的一次暴雨过程的预报误差来源。首先比较了以NCEPFNL为初始资料的WRF模式的模拟预报(记为WRFFNL)和ECMWF(European Centre for Medium-Range Weather Forecasts)关于该次暴雨过程的...
详细信息
本文基于WRF模式研究了2015年5月16~17日广东西南地区的一次暴雨过程的预报误差来源。首先比较了以NCEPFNL为初始资料的WRF模式的模拟预报(记为WRFFNL)和ECMWF(European Centre for Medium-Range Weather Forecasts)关于该次暴雨过程的确定性预报。结果表明,ECMWF具有较高的预报技巧,因此,认为ECMWF的模式和初始场都较为准确。进一步,以ECMWF的初值作为初始场,选用相同的物理参数化方案,再次用WRF模式进行预报(预报结果记为WRFEC)。结果表明相对WRFFNL,WRFEC的预报结果有明显改善。这表明,初始场的改进对预报有较大的影响,初始误差是预报误差的重要来源。进一步,分析了初始误差的主要来源区域和来源变量。结果表明,南海北部湾至广西西南区域为本次暴雨预报初始误差的主要来源区域,而初始温度场和初始湿度场则为此次暴雨预报初始误差的主要来源变量。同时改进初始温度场和湿度场可以较大程度提高本次暴雨过程的预报技巧。
基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及...
详细信息
基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。
暂无评论