大数据时代背景下,随着所获数据数量和维度的不断增加,高维数据的处理成为聚类分析的重点和难点.基于同一类别高维数据通常分布在高维环绕空间的低维子空间这一事实,子空间聚类成为高维数据聚类分析领域的重要方法.稀疏子空间聚类(Sparse Space Clustering,SSC)通过交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)对数据矩阵的稀疏自表达系数进行求解,发现分布于低维子空间并集中的数据的稀疏表示并进行聚类.但是ADMM参数多、收敛速度慢,其效率难以满足对大规模数据库进行聚类分析的要求.针对这一问题提出了基于L_0约束的稀疏子空间聚类方法,该方法使用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法求解L_0约束的自表达稀疏重建问题,构建数据集中各数据之间的相关性矩阵,最终对相关性矩阵应用谱聚类方法得到聚类结果.根据OMP算法每次迭代之间的耦合关系对其进行优化,进一步降低了计算复杂度,提高了算法效率.在生成数据和Extended Yale B database人脸数据库的实验结果表明,该算法与SSC相比,在显著减少计算时间的基础上,取得了与SSC相当的聚类准确率.
针对多种放大倍数的人脸超分辨率重建问题,提出一种基于极深卷积神经网络的人脸超分辨率重建方法,并通过实验发现增加网络深度能够有效提升人脸重建的精度。首先,设计一个包含20个卷积层的网络从低分辨率图片和高分辨率图片之间学习一种端到端的映射关系,并通过在网络结构中将多个小的滤波器进行多次串联以扩大提取纹理信息的范围。其次,引入了残差学习的方法来解决随着深度的提升细节信息丢失的问题。另外,将不同放大因子的低分辨率人脸图片融合到一个训练集中训练,使得该卷积网络能够解决不同放大因子的人脸超分辨率重建问题。在CASPEAL测试集上的结果显示,该极深卷积神经网络的方法比基于双三次插值的人脸重建方法在峰值信噪比(PSNR)和结构相似度上有2.7 d B和2%的提升,和SRCNN的方法比较也有较大的提升,在精度和视觉改善方面都有较大提升。这显示了更深的网络结构能够在重建中取得更好的结果。
暂无评论