目的在传统的去噪模型中,若仅考虑去噪与边缘保护这两个方面,会导致纹理等细节信息丢失,为解决传统模型这方面的缺陷,提出了一种基于拟正态分布的图像去噪模型。方法提出的模型是以经典的各向异性扩散模型为基础,首先分析了扩散系数在扩散过程中的作用,引入通量函数,做归一化处理,建立新的扩散系数,构造新的扩散模型;然后考虑新模型在去噪过程中,既要有效去噪,又要保护图像的边缘、纹理等细节信息,将扩散系数构造成拟正态分布函数。结果实验结果表明,在同一实验条件下,新模型的峰值信噪比与经典模型相比提高了28 d B左右,均方差大幅度降低,图像的边缘更加清晰,对比度得到显著增强。结论提出的新模型能够较稳定地控制扩散过程,使图像在去噪和保边缘、纹理等细节信息方面都达到令人满意的效果,峰值信噪比有了大幅提高,其去噪性能较经典模型更具优越性。
目前立体图像质量评价算法缺乏可靠的预测性能,主要表现在研究人类视觉系统时生物学理论薄弱,并且已有的浅层模型无法模拟出视觉信息复杂的处理过程。针对上述问题,提出一种基于交互式卷积神经网络的无参考立体图像质量评价算法。根据初级视觉区域的双目视觉机制,融合左、右视图生成独眼特征图,并采用高斯差分算法提取左、右视图边缘信息,计算边缘求和以及差分特征图;搭建交互式卷积神经网络,整合特征图,实现深度特征学习和质量回归预测。在LIVE立体图像库上的Pearson线性相关系数(Pearson Linear Correlation Coefficient,PLCC)达到0.95以上,结果表明采用该算法能有效地解决失真立体图像质量评价问题。
暂无评论