加密图像中的数据隐藏(Data Hiding in Encrypted Images,DHEI)是一种可行的云端存储方案,但其载体唯一,一旦被破坏就可能导致载体图像无法恢复。DHEI与秘密共享的结合能够在多载体图像中嵌入数据的同时保护原始图像的隐私性和安全性。...
详细信息
加密图像中的数据隐藏(Data Hiding in Encrypted Images,DHEI)是一种可行的云端存储方案,但其载体唯一,一旦被破坏就可能导致载体图像无法恢复。DHEI与秘密共享的结合能够在多载体图像中嵌入数据的同时保护原始图像的隐私性和安全性。但现有基于数据隐藏的秘密共享方案主要是利用自然图像像素的相关性为数据隐藏预留空间,嵌入容量受自然图像内容制约。在进行数据嵌入时,若数据量大于载体图像可嵌入容量,则存在数据丢失的可能性。针对该问题,本文基于压缩感知技术(Compressed Sensing,CS),提出一种面向秘密共享的逐层残差预测加密域大容量数据隐藏方案。首先,该方案通过压缩感知逐层预测技术(Layer-by-Layer Prediction Technology base on Compressed Sensing,LLPT-CS)减小测量值之间的冗余性,实现对原始图像进行加密的同时腾出嵌入空间(~4.0bpp);其次,加密图像以秘密图像共享(Secret Image Sharing,SIS)的形式生成n个秘密份额,分别发送至n个数据隐藏器;接着,数据隐藏器在无图像内容访问权限的情况下向秘密份额嵌入秘密数据;最后,接收端获取n个数据隐藏器中的任意k个秘密份额后即可依次通过拉格朗日插值法和CS重建算法恢复原始图像。实验结果表明,本文提出方案能实现嵌入率预设,保证数据嵌入的稳定性,并且能较好地保护云端图像存储的隐私性和安全性;与现有的秘密共享数据隐藏方案相比,该方案不仅能很好地为云端图像储存提供稳定的大容量秘密数据嵌入空间,而且还能恢复出在视觉上愉悦的图像,拥有现有方案不具备的逐步恢复功能。
为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding, RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方...
详细信息
为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding, RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方法,显著地提升了像素的预测精度;然后,设计一种基于复杂度的全局排序策略,分别对彩色图像三个通道中的预测误差进行排序,充分利用每个通道中预测误差的全局特征,生成分布更加集中的三维预测误差直方图(Three-Dimensional Prediction Error Histogram, 3D PEH);最后,利用自适应三维映射策略修改误差直方图,嵌入秘密数据.实验结果表明,与最新的一些方案相比,所提的方法实现了更好的嵌入性能.
暂无评论