为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding, RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方...
详细信息
为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding, RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方法,显著地提升了像素的预测精度;然后,设计一种基于复杂度的全局排序策略,分别对彩色图像三个通道中的预测误差进行排序,充分利用每个通道中预测误差的全局特征,生成分布更加集中的三维预测误差直方图(Three-Dimensional Prediction Error Histogram, 3D PEH);最后,利用自适应三维映射策略修改误差直方图,嵌入秘密数据.实验结果表明,与最新的一些方案相比,所提的方法实现了更好的嵌入性能.
解决约束超多目标优化问题的关键在于约束处理和均衡收敛性与多样性,搜索空间中的约束阻碍种群寻找Pareto前沿面,容易使种群陷入局部最优,而离散的可行域则使种群的多样性较差。提出组合算子型双阶段搜索策略(two-stagesearch strategy with combined operator,TSCO)。TSCO分两阶段处理约束:一阶段算法仅优化目标函数,种群不受约束制约快速向Pareto前沿面方向接近;二阶段通过目标转换将约束违反度视作一个新目标函数以解决原始约束问题。在搜索过程中使用模拟二进制交叉算子和DE/current-to-pbest/1算子构成的组合算子生成收敛性和多样性优秀的个体。为验证策略有效性,结合TSCO策略的AGE-MOEA(TSCOEA)在C_DTLZ、DC_DTLZ和MW测试集上同4种性能优异的约束超多目标进化算法进行对比。实验表明,在大多数问题上,TSCOEA获得的种群收敛性和多样性更好。
数据流分类是数据挖掘中重要的研究内容,但是数据流中的概念漂移和标记成本昂贵的问题给分类带来了巨大的挑战。现有的研究工作大多采用基于主动学习的在线分类技术,一定程度上缓解了概念漂移和有限标签的问题,但是这些方法的分类效率较低,并且忽略了内存开销的问题。针对这些问题提出了一种结合微聚类和主动学习的流分类方法(a data stream classification method combining micro-clustering and active learning,CALC)。提出一种新的主动学习混合查询策略,将其与基于错误的表示学习相结合,从而在维护过程中衡量每个微聚类的重要性,通过动态维护一组微聚类以适应数据流中产生的概念漂移。采用基于微聚类的惰性学习方法,实现对数据流的分类,并完成对缓存微聚类的在线更新。使用三个真实数据集和三个人工合成数据集进行实验,结果显示CALC在分类准确率和内存开销方面优于现有的数据流分类算法。与基准模型(online reliable semi-supervised learning on evolving data streams,ORSL)相比,CALC的分类准确率有一定的提升,在六个数据集上的平均准确率分别提高了5.07、2.41、1.04、1.03、3.47、0.64个百分点。
暂无评论