马铃薯植株钾含量(Plant potassium content,PKC)是监测马铃薯营养状况的重要指标,快速准确地获取马铃薯植株钾含量对田间施肥和生产管理具有指导意义。基于无人机遥感平台搭载RGB传感器分别获取马铃薯块茎形成期、块茎增长期和淀粉积累期的RGB影像,并实测马铃薯植株钾含量。首先利用各个生育期的RGB影像提取每个小区冠层平均光谱和纹理特征。然后分别基于冠层光谱和纹理特征构建植被指数和纹理指数(NDTI、RTI和DTI),并与实测PKC进行相关性分析。最后利用多元线性回归(Multiple linear regression,MLR)、偏最小二乘(Partial least squares regression,PLSR)和人工神经网络(Artificial neural networks,ANN)构建马铃薯PKC估算模型。结果表明:各生育期NDTI、RTI和DTI与马铃薯PKC相关性均高于单一纹理特征,植被指数结合纹理指数均能提高模型的可靠性和稳定性,MLR和PLSR构建的估算模型精度均优于ANN。本研究可为马铃薯PKC监测提供科学参考。
[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征的尺度分割思想与基于物候学的DESTIN(delineation by fusing spatial and temporal information)分割算法,提出了基于多尺度及DESTIN约束的高分遥感影像农田田块语义分割方法。[结果]多尺度与DESTIN约束下基于深度模型的田块语义分割有效改善模型出现的区域不封闭、边缘不贴合、噪点和块状模糊等问题,一定程度修正了深度模型语义分割的错误识别,IoU指标在2个测试集上分别达到94.08%和90.79%,相较深度模型的遥感影像田块语义分割分别提高1.65%和2.32%,对研究区域的田块提取区域更完整、精度更高。[结论]多尺度及DESTIN约束进一步改善了田块语义分割问题,有助于提高高分遥感影像的田块识别精度。
暂无评论