四元数神经网络将实值神经网络推广到了四元数代数中,其在偏振合成孔径雷达奇异点补偿、口语理解、机器人控制等任务中取得了比实值神经网络更高的精度或更快的收敛速度.四元数神经网络的性能在实验中已得到广泛验证,但四元数神经网络的理论性质及其相较于实值神经网络的优势研究较少.从表示能力的角度出发,研究四元数神经网络的理论性质及其相较于实值神经网络的优势.首先,证明了四元数神经网络使用一个非分开激活的修正线性单元(rectified linear unit,ReLU)型激活函数时的通用近似定理.其次,研究了四元数神经网络相较于实值神经网络的逼近优势.针对分开激活的ReLU型激活函数,证明了单隐层实值神经网络需要约4倍参数量才能生成与单隐层四元数神经网络相同的最大凸线性区域数.针对非分开激活的ReLU型激活函数,证明了单隐层四元数神经网络与单隐层实值神经网络间的逼近分离:四元数神经网络可用相同的隐层神经元数量与权重模长表示实值神经网络,而实值神经网络需要指数多个隐层神经元或指数大的参数才可能近似四元数神经网络.最后,模拟实验验证了理论.
在不确定信息的复杂环境下进行决策是现实中人们经常面对的困难之一,因此具有能够进行良好决策的能力被视为人工智能的重要能力之一.而游戏类型的博弈作为对现实世界的一种高度抽象,具有良定义、易检验算法优劣等特点,成为研究的主流.其中以掼蛋为代表的扑克类博弈不仅具有他人手牌未知这样的难点,还由于可选出牌动作与他人手牌情况数量庞大等特点,难以进行高效求解.因此,提出了一种软深度蒙特卡洛(soft deep Monte Carlo,SDMC)求解方法.该方法能够更好地融合领域知识,加快策略学习速度,并采用软动作采样策略调整实时决策,提升策略胜率.所提出的SDMC方法训练出的策略模型参加第2届“中国人工智能博弈算法大赛”时获得冠军.与第1届比赛冠军策略和第2届其他策略模型的实验对比证明了该方法在解决掼蛋扑克博弈中的有效性.
暂无评论