以六氯化钨、硫代乙酰胺、氧化石墨烯为原料,采用一步水热法合成了二维的二硫化钨/石墨烯(WS_2/RGO)复合材料。水热合成的WS_2/RGO具有薄层的二维结构,且由于石墨烯的存在,WS_2以较少的层数形成薄片状生长在石墨烯的表面。尝试将这种非Pt类材料用于电催化氧化原反应,测试结果表明,WS_2在碱性条件下氧还原活性非常低,但是复合RGO形成WS_2/RGO复合材料后,电催化氧化原性能有了极大的提高,其起始电位为-0.17 V(vs SCE),转移电子数为3.7,极限电流密度为2.5 m A·cm-2,同时其具有较好的抗甲醇性能和循环稳定性。这是因为WS_2/RGO复合材料的二维结构具有更高的电子传输速率,同时硫化钨和石墨烯可以发挥协同催化作用。这种新型的二硫化钨/石墨烯(WS_2/RGO)复合材料作为非贵金属催化剂表现出良好的氧还原性能,在燃料电池上具有较好的应用前景。
Nitrogen-doped carbon materials exhibiting high oxygen reduction reaction activity were prepared via the pyrolysis of a poly-p-phenylenediamine/carbon black composite. The as-synthesized cata- lyst showed excellent ca...
详细信息
Nitrogen-doped carbon materials exhibiting high oxygen reduction reaction activity were prepared via the pyrolysis of a poly-p-phenylenediamine/carbon black composite. The as-synthesized cata- lyst showed excellent catalytic activity in alkaline solution, and outperformed commercial Pt/C in KOH solution (0.1 mol/L), as demonstrated by the higher current density and the more positive half-wave potential. Scanning electron microscopy and N2 adsorption-desorption analyses indicated that a composite structure, in which the N-rich surface of the poly-p-phenylenediamine had an in- creased active center concentration and the high external surface area of the carbon black was conducive to the mass transport, is highly beneficial in terms of promoting the oxygen reduction reaction. However, the activity of this catalyst underwent an obvious decrease following exposure to air for 30 d. X-ray photoelectron spectroscopy showed that the oxygen content in the catalyst was increased by prolonged air exposure. O ls spectrum showed increases in the C:O and C-O compo- nents, suggesting that atmospheric oxygen reacted with the catalyst. This oxidation leaded to the deactivation of active center, thus the catalytic activity decreased. Based on these results, the stabil- ity in air of nitrogen-doped carbon materials must be taken into consideration when assessing ap- plications as alternatives to platinum-based materials.
Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technol...
详细信息
Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.
利用一种新的原位水解沉积方法,以在高湿度空气中老化的甲醇中作为溶剂,通过乙醇钽水解而成前驱体微球颗粒沉积,制备出了高效的Ta_3N_5微球光电极,其1.6 V(vs RHE)电极电位下的光电流值达到了6.6 m A·cm^(-2)。相反地,在新鲜的甲...
详细信息
利用一种新的原位水解沉积方法,以在高湿度空气中老化的甲醇中作为溶剂,通过乙醇钽水解而成前驱体微球颗粒沉积,制备出了高效的Ta_3N_5微球光电极,其1.6 V(vs RHE)电极电位下的光电流值达到了6.6 m A·cm^(-2)。相反地,在新鲜的甲醇溶液中没有钽前驱体微球颗粒沉积。这表明甲醇中水的含量对Ta_3N_5微球光电极的形成十分重要。另外,本制备方法也能方便地在其他透明导电衬底上制备出Ta_3N_5。
暂无评论