随机测试和划分测试是两种重要的测试方法,关于两者在失效检测能力和效率方面的比较一直是软件测试领域的研究热点之一.适应性随机测试是对随机测试的一种增强,通过实现测试用例在输入域上的均匀分布,提高了随机测试的失效检测能力.该文从划分测试出发,借鉴了均匀分布的思想,提出了一种基于优先级的迭代划分测试方法(Iterative Partition Testing based on Priority Sampling,IPT-PS).首先迭代划分输入域并选取划分后子域的中心点作为待执行的测试用例,随后采取优先级策略,将待执行的测试用例分为3种不同优先等级并依次执行.迭代划分和中心采样仅需要已知输入域的空间信息,优先级执行则考虑了测试用例的不同空间特性,上述3种操作均仅需要很少的时间开销并力求实现测试用例在输入域上的均匀分布,以提高失效检测能力.该文通过理论分析给出了IPT-PS检测出对应失效所需测试用例数量的上界,并通过一系列实验结果表明:IPT-PS在仅使用接近随机测试时间开销的情况下,可以获得与适应性随机测试相近甚至更好的失效检测能力,是一种高效的测试方法.
乳腺图像的感兴趣区域(region of interest,ROI)检测是计算机辅助诊断乳腺疾病的第一步,检测效果的提升对减小误诊率有重要的作用.传统方法往往提取单独的视觉特征来描述乳腺图像,通过分类的方法找出包含肿块的区域.然而由于乳腺图像内...
详细信息
乳腺图像的感兴趣区域(region of interest,ROI)检测是计算机辅助诊断乳腺疾病的第一步,检测效果的提升对减小误诊率有重要的作用.传统方法往往提取单独的视觉特征来描述乳腺图像,通过分类的方法找出包含肿块的区域.然而由于乳腺图像内容丰富结构复杂,使用单一的底层视觉容易忽视特征间的相互联系.提出基于相关性特征融合的乳腺图像ROI检测框架(multi-cue integration detection,MCID),通过引入乳腺图像的相关性特征,并与乳腺图像局部视觉特征相融合,辅助乳腺图像ROI的检测,以提高检测准确性.乳腺图像ROI检测实验表明,MCID可提高肿块检测的准确性.
暂无评论