In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith...
详细信息
In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is ***, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction ***, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise ***, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.
针对面向车联网应用的云计算平台的高能耗问题,提出一种采用节能整合策略的能耗感知调度算法——任务集整合算法(Task Set Consolidation Algorithm)。该算法的主要思想是通过减少活跃物理服务器的数目,有效降低云平台的能量消耗。建立...
详细信息
针对面向车联网应用的云计算平台的高能耗问题,提出一种采用节能整合策略的能耗感知调度算法——任务集整合算法(Task Set Consolidation Algorithm)。该算法的主要思想是通过减少活跃物理服务器的数目,有效降低云平台的能量消耗。建立了云平台模型、车联网任务集模型和能耗模型,确定了云平台的节能目标函数和变量因子。仿真实验通过模拟多维资源多并发任务集的云平台环境,以物理服务器的活跃时间和活跃数目、云平台的能量消耗作为性能指标,将任务集整合算法与现有算法进行了比较。实验结果表明,TSC算法能够在避免任务集资源发生冲突的情况下,使面向车联网应用的云平台激活的物理服务器数量达到最少,能耗降到最低。
暂无评论