在大型软件项目的开发与维护中,从大量的代码文件中定位软件缺陷费时、费力,有效地进行软件缺陷自动定位,将能极大地降低开发成本.软件缺陷报告通常包含了大量未发觉的软件缺陷的信息,精确地寻找与缺陷报告相关联的代码文件,对于降低维护成本具有重要意义.目前,已有一些基于深度神经网络的缺陷定位技术相对于传统方法,其效果有所提升,但相关工作大多关注网络结构的设计,缺乏对训练过程中损失函数的研究,而损失函数对于预测任务的性能会有极大的影响.在此背景下,提出了代价敏感的间隔分布优化(cost-sensitive margin distribution optimization,简称CSMDO)损失函数,并将代价敏感的间隔分布优化层应用到深度卷积神经网络中,能够良好地处理软件缺陷数据的不平衡性,进一步提高缺陷定位的准确度.
针对高动态范围(HDR)视频较之于传统低动态范围(LDR)视频所需存储资源和传输带宽急剧增加的问题,本文提出了一种基于视觉感知特性的HDR视频编码的动态率失真优化算法,以提高高效视频编码(HEVC)Main 10编码HDR视频的性能。本文通过引入视觉选择性关注信息,对不同区域采取非均等的失真权重分配策略,优化常规的失真计算方法;同时,为了进一步去除视频中的感知冗余,融合视频内容的纹理特性自适应调节拉格朗日乘子,并应用于编码量化器动态调节量化参数,实现编码比特和失真感知权衡。实验结果表明:与HEVC Main 10相比,在相同HDR-VDP和PSNR DE质量指标下,所提算法平均节省7.46%和6.53%码率,最大分别节省18.52%和11.49%,所提算法在保持视觉质量的前提下能够有效降低码率。
暂无评论