目的纹理是描述和区分不同物体的重要特征之一,纹理特征提取一直是模式识别、机器视觉领域的研究热点。局部方向模式(LDP)是一种分辨性好、对随机噪声和非均匀光照鲁棒的纹理特征。而LDP特征由于计算8方向的边缘响应并排序,提取速度较慢。为此对LDP编码方案进行改进。方法设计了两种改进方案:第1种方案直接对8方向的边缘响应符号进行编码,避开排序,称为FLDP(fast local directional pattern)特征;第2种方案,尝试使用较少的方向模板来降低特征提取的时间、空间消耗,设计了MLDP算子(mini local directional pattern)。结果在Brodatz数据集的24类均匀纹理图像以及111类全部纹理图像上将本文提出的FLDP特征、MLDP特征与传统的LDP进行了对比实验。实验结果表明,在保证了分类准确率的前提下,FLDP算子的运算速度是3th-LDP的20倍左右,MLDP算子的运算速度是3th-LDP的35倍左右。结论论文设计了2种方案改进了LDP特征,分别为FLDP算子和MLDP算子。实验结果表明,这两种改进方案,在保证分类准确率的同时,大幅度提高了特征提取运算速度。
针对云服务中由于资源超额预定造成负载不均衡的云虚拟机异常,提出了一种基于密度空间的局部离群因子(Local Outlier Factor Based on Density Space,LOFBDS)算法。LOFBDS算法参考DBSCAN(Density-Based Spatial Clustering of Applicati...
详细信息
针对云服务中由于资源超额预定造成负载不均衡的云虚拟机异常,提出了一种基于密度空间的局部离群因子(Local Outlier Factor Based on Density Space,LOFBDS)算法。LOFBDS算法参考DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法,将云虚拟机在密度空间中的性质融合至LOF算法之中,提出对云虚拟机的判断规则,以达到优化对正常云虚拟机的检测过程,提高检测效率。实验结果表明,所提出的算法对云服务负载不均造成的云虚拟机异常有着良好的检测效率,并且时间花费较少。
暂无评论