提出一种半监督学习算法预测蛋白质序列中microRNA-结合残基的新式的方法。通过Laplacian支持向量机(Laplacian support vector machine, LapSVM)算法结合新提出的混合特征构建预测模型。混合特征是由三类信息组合获得:二级结构信息、HK...
详细信息
提出一种半监督学习算法预测蛋白质序列中microRNA-结合残基的新式的方法。通过Laplacian支持向量机(Laplacian support vector machine, LapSVM)算法结合新提出的混合特征构建预测模型。混合特征是由三类信息组合获得:二级结构信息、HKM特征和新提出的氨基酸理化特性和进化信息结合的特征。比较各种特征的预测性能,新提出的这一特征对预测性能的提高贡献最大。结果表明,通过特征选择,本研究构建的预测模型准确性达到88.72%,敏感性达到54.18%,特异性达到91.15%,明显优于其他方法。
暂无评论