概念漂移是流数据的主要特征之一,如何检测概念漂移的发生以及调整预测模型去适应概念漂移现象备受研究者的关注.目前有关概念漂移的大多数算法仅仅针对单一类型的概念漂移检测,并且需限制输入数据服从某一分布,所以在检测多种类型概念漂移时效果不理想.提出一种在线集成自适应算法(KSHPR),在自适应随机森林(Adaptive Random Forests,ARF)算法和流随机补丁(Streaming Random Patch,SRP)算法的基础上进行优化改进,采用非参数检验与滑动窗口相结合的策略进行概念漂移检测,降低窗口平均值对算法性能的影响,并以此为基础建立四个基学习者的集成学习模型,根据基学习者预测准确率,动态分配权值,有效解决流式数据中学习模型精度低的问题.实验证明,提出的算法在真实数据集和合成数据集中均表现优良,与其他算法相比,该算法的稳定性、分类准确性与多类型概念漂移适应能力均有所提升.
近年来,深度强化学习在复杂控制任务中取得了令人瞩目的效果,然而由于超参数的高敏感性和收敛性难以保证等原因,严重影响了其对现实问题的适用性.元启发式算法作为一类模拟自然界客观规律的黑盒优化方法,虽然能够有效避免超参数的敏感性,但仍存在无法适应待优化参数量规模巨大和样本使用效率低等问题.针对以上问题,提出融合引力搜索的双延迟深度确定策略梯度方法(twin delayed deep deterministic policy gradient based on gravitational search algorithm,GSA-TD3).该方法融合两类算法的优势:一是凭借梯度优化的方式更新策略,获得更高的样本效率和更快的学习速度;二是将基于万有引力定律的种群更新方法引入到策略搜索过程中,使其具有更强的探索性和更好的稳定性.将GSA-TD3应用于一系列复杂控制任务中,实验表明,与前沿的同类深度强化学习方法相比,GSA-TD3在性能上具有显著的优势.
暂无评论