叶片表型检测是感知杨树生长状态的重要手段之一,叶片颜色、姿态、纹理等形态结构表型信息可揭示植株所受胁迫的程度。其中,单个叶片分割是计算、统计其表型参数的基础。当前流行的AI算法已可满足叶片分割任务的性能需求,然而常规深度学习模型训练需要大量人工标签,制约了其发展和应用。本研究提出一种融合零样本学习和迁移学习的杨树叶片实例分割方法:运用视觉大模型GroundingDINO检索杨树苗图像中的叶片,获取对应的边界框;使用Segment Anything 2模型(segment anything model v2,SAM2)分割图像中全部对象,得到对应的掩膜(mask);将GroundingDINO模型生成的边界框作为提示,辅助SAM2过滤出叶片类别的掩膜;利用迁移学习策略,将AI生成的叶片掩膜作为标签信息,训练轻量化的YOLOv8-Segment模型。此外,构建独立测试集用于评估模型分割精度,选择交并比阈值为50%的平均精度(average precision using 50%intersection over union threshold,AP_(50))和平均交并比(mean intersection over union,mIoU)作为性能指标。结果表明,基于“Leaf”这一检索词,GroundingDINO与SAM2的组合(权重约810 MB)可实现高性能的杨树叶片分割,AP_(50)为0.936,mIoU为0.778。通过过滤异常尺寸的提示边界框,AP_(50)提升至0.942。迁移学习得到的YOLOv8-Segment模型权重仅6.5 MB,AP_(50)为0.888,大幅精简模型的同时保障了精度。本研究涉及的叶片分割模型构建过程均无须人工标注,实现了高效率、低成本的杨树叶片实例分割,可为杨树叶片计数和叶面积计算等后续表型分析应用提供技术支持。
以三峡库区马尾松人工林为对象,将土壤筛分为大团聚体(2000~8000μm)、粗砂粒(1000~2000μm)、小团聚体(250~1000μm)和微团聚体(<250μm)4个粒径,研究低、中、高氮添加处理(氮添加量分别为30、60、90 kg N·hm^(-2)·a^(-1))下土壤酸解性有机氮组分和净氮矿化的变化。结果表明:不同处理下,团聚体净硝化速率为0.30~3.42 mg N·kg^(-1),占净氮矿化的80%以上。与对照相比,不同处理4个粒径的总氮含量分别提高24.1%~45.5%、6.4%~34.3%、7.9%~42.4%,净氮矿化速率分别提高1.3~7.2、1.4~6.6、1.8~12.9倍,而速效磷含量分别降低9.3%~36.9%、12.2%~56.7%、19.2%~61.9%。可酸解性有机氮组分、有机质含量以及净氨化、净硝化和净氮矿化速率均随着团聚体粒径的减小而增加,但速效磷含量变化呈相反的趋势。酸解性有机氮组分含量大小为:酸解氨基酸态氮>酸解铵态氮>酸解未知态氮>酸解氨基糖态氮。总氮是提高酸解性有机氮组分含量的主导因子。多元逐步回归显示,酸解氨基酸态氮和酸解氨基糖态氮含量影响了净氨化速率;酸解氨基糖态氮、酸解氨基酸态氮和酸解铵态氮含量共同影响了净硝化、净氮矿化速率以及净氮矿化累积量。综上,团聚体的物理结构影响了土壤氮矿化,氮添加提高了土壤生物可利用性及易矿化态酸解性有机氮的含量,但大量氮添加导致土壤有机质和速效磷含量下降。
暂无评论