Effect of electrode insulation on the electric field and the flow field of the machining gap during electrochemical drilling(ECD) is numerically studied. Electric field simulation shows that the current density alon...
详细信息
Effect of electrode insulation on the electric field and the flow field of the machining gap during electrochemical drilling(ECD) is numerically studied. Electric field simulation shows that the current density along the side gap decreases with increasing the thickness of electrode insulation. And the analysis of the electrolyte flow in the frontal gap shows that the insulation thickness has a remarkable influence on the pressure distributions. Ex- periments investigate the influence of the insulation thickness on the main characteristics of the machined hole, i.e. , radial overcut, entrance conicity, and current stability. The poor hole is observed and identified as most likely to occur with a combination of the low tool feed rate and the low insulation thickness. The appropriate thickness of the insulating layer leads to an improvement on hole accuracy and machining stability.
The mathematical model of the grinding temperature is established. The grinding temperature and the cooling rate are measured in the grind-hardening process of 40Cr steel under different conditions. Moreover, the grin...
详细信息
The mathematical model of the grinding temperature is established. The grinding temperature and the cooling rate are measured in the grind-hardening process of 40Cr steel under different conditions. Moreover, the grind-hardening effects are investigated. Experimental results show that the calculated temperatures are comparatively close to the measured ones, and the required temperature and cooling rate can be achieved. Furthermore, the microstructure of the hardened zone is similar to that obtained through the high-frequency induction technique. The average hardness of the entirely hardened zone is HV670 and the thickness of the hardened layer is adjacent to 1.3 mm. It indicates that the hardening mechanism induced by the grinding heat and high-frequency heating is identical. Finally, the fine needlelike martensite is obtained.
The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer...
详细信息
The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer are analyzed. The micro-hardness in the shot peening affected layer and the residual pressure stress are surveyed. The changes of surface quality, such as micro-hardness, metallographic structure and residual stress caused by shot peening are investigated. The result shows that shot peening can significantly improve surface quality and fatigue life of 10Ni3MnCuAl steel. The over peening effect is produced when the shot peening intensity is high, and it leads to the decrease of the fatigue life. When the optimal arc high value of shot peening is 0. 40 mm in experiments, the best surface quality is obtained and the depth of the residual stress in the precipitation-hardening layer reaches 450μm.
暂无评论