传统的C4.5分类决策树作为数据分类算法具有计算简单、准确率高的优势,由于飞机具有参数多和数据量大的因素,C4.5算法需要对连续属性值进行多次顺序扫描,分类时间效率较低。针对此问题,提出近似粗糙集和决策分辨力分类算法,利用粗糙集近似度来判断属性划分样本数据能力,并将其代入到决策分辨力算法中,以决策分辨力最大的属性作为分裂特征建立分类决策树。算法在保证分类决策准确率的同时,提高计算效率并减少过拟合问题的产生。通过对UCI(University of California, Irvine)数据集上多组数据样本的对比实验分析,验证了本文提出PSRP(rough set and resolving power)的算法在保证相同准确率的情况下,平均计算时间效率提升约10%,可靠性提升2%。
针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geome...
详细信息
针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of eigenvalue,DMGM)的频谱感知算法。选择了Alpha稳定分布噪声模拟脉冲噪声环境,理论分析与仿真实验结果表明,在不增加算法复杂度的前提下,DMGM算法与其他算法相比,更适用于脉冲噪声环境,在低信噪比条件下具有更好的感知性能。
频控阵(Frequency Diversity Array,FDA)雷达于2006年由Antonik和Wicks提出.由于FDA雷达每个相邻的天线之间存在一个频率偏移,因此在发射阵列存在距离角度二维依赖性.而对于双基地频控阵多输入多输出(FDA-Multiple Input Multiple Output,FDA-MIMO)雷达而言,在导向矢量中耦合了波离方向、到达方向、距离(Direction Of Departure-Direction Of Arrival-range,DOD-DOA-range)三个信息,如何对三者信息进行解耦便成为研究的重点.本文针对双基地FDA-MIMO雷达的目标参数估计问题,提出了一个张量框架下的降维多重信号分类(Reduced-Dimension MUltiple SIgnal Classification,RD-MUSIC)的参数估计算法.首先,为了将发射阵列中的DOD和距离信息进行解耦,需要对发射阵列进行子阵的划分.紧接着利用高阶奇异值分解(High-Order-Singular Value Decomposition,HOSVD)算法获得信号子空间,并构建二维空间谱函数.其次,通过拉格朗日算法对空间谱进行降维,使其仅与DOA有关,从而得到DOA估计.然后利用子阵之间的频率增量来对DOD和距离信息进行解耦,同时消除相位模糊,最终得到与DOA估计自动匹配的DOD和距离估计.所提算法利用高维数据的多维结构提高了估计精度,同时能够有效地降低运算复杂度.数值实验证明了所提算法性能的优越性.
暂无评论