新型电力系统中“源-网-荷-储”协同控制具有大规模节点接入、双向可靠和广域低时延的信息传输需求,是5G通信重要垂直应用场景。然而,现有民用5G通信无法完全满足电力业务互动控制对高可靠和低时延的信息传输需求。该文在5G标准基础上,将子载波跳频技术(frequency hopping,FH)应用于可配置正交频分复用(orthogonal frequency division multiplex,OFDM)系统中,形成OFDM/FH传输新体制,为新型电力系统提供多业务接入和高可靠的信号传输方案;同时,考虑控制业务短包和突发特性,将OFDM/FH信号传输与5G/6G微时隙(mini-slot)调度策略融合,以mini-slot为基本单位的资源调度和重传机制能有效降低时延。随后,通过理论分析,揭示该电力物联网(Internet-of-things,IoT)通信系统传输可靠性与重传时延的内在折中关系。通过对无线通信物理层信号处理和媒介接入层时隙调度联合设计,该文提出的基于mini-slot调度架构OFDM/FH的电力物联网5G/6G通信方案,可支持“源-网-荷-储”多业务泛在接入、高达99.999%传输可靠性和毫秒级低时延要求,实现了5G/6G高可靠低时延通信(ultrareliability and low-latency communications,uRLLC)与泛在电力控制业务的深度融合。
在窄带物联网(Narrow Band Internet of Things,NB-IoT)系统中,上行数据链路采用单载波频分多址(Single-Carrier Frequency-Division Multiple Access,SC-FDMA),由于SC-FDMA固有的解码步骤会将估计误差扩展到所有的子载波上,因此对信道...
详细信息
在窄带物联网(Narrow Band Internet of Things,NB-IoT)系统中,上行数据链路采用单载波频分多址(Single-Carrier Frequency-Division Multiple Access,SC-FDMA),由于SC-FDMA固有的解码步骤会将估计误差扩展到所有的子载波上,因此对信道估计的误差更加敏感。在传统基于阈值的离散傅里叶变换(Discrete Fourier Transform,DFT)信道估计的基础上,利用NB-IoT的应用场景的低速性、准静态性,提出了一种基于双时隙的DFT信道估计算法。该算法利用两时隙内的导频的线性组合进一步降低噪声的影响,在复杂度增加较小的情况下,提升了系统性能。Matlab仿真结果表明,与基于阈值的DFT信道估计相比,在误比特率(Bit Error Ratio,BER)为1×10^-3时,文中算法相较基于阈值的DFT估计算法约有4 dB的性能增益,具有一定的实用价值。
暂无评论