利用语音信号在离散余弦变换(DCT)域的近似稀疏性和量化压缩感知理论,文中提出一种基于量化压缩感知的语音压缩编码方案。编码端利用压缩感知技术,将语音信号投影成数据量大大减少的观测序列,然后对观测序列采用Lloyd-M ax量化得到量化后的观测样值;解码端直接利用量化后的观测样值,结合重构算法重构出原始语音信号的DCT系数,经过DCT反变换得到重构后的语音信号,并采用后置低通滤波器改善重构语音的听觉效果。该编码方案解码端不需要进行反量化,而是直接利用量化后的观测样值进行重构,有效降低了解码端的运算量及复杂度。仿真结果表明:采用量化迭代硬阈值(QIHT)算法重构效果优于迭代硬阈值算法(IHT),重构语音的信噪比能达到20 d B以上,MOS分达到3.26。
伪造文本检测是保证社交安全的重要条件。融合多模特征注意力机制的伪造文本检测,实现多类型伪造文本的检测,并提高其精度。针对目前数据集的不足,根据不同的文本生成模型GPT-2、Grover、LSTM等制作了对应的多伪造类型数据集。融合GLTR、Grover和LP(Language and Physical)3个多模特征,使用注意力机制将该3个模型输出进行融合。设计时空特征融合网络充分提取时序信息和局部空间信息。最后添加分类层完成伪造文本的分类。实验结果表明:融合多模特征和时空特征融合网络可提取更多的伪造信息,同时充分融合了时序和局部空间信息,提升了伪造文本的表征能力,且泛化能力也优于以往网络。
暂无评论