针对压缩感知(Compressed Sensing,CS)中信号重构的l1-正则化问题中的l1-正则项非光滑,求解比较困难,提出了交替方向外点持续法(Alternating Direction Exterior Point Continuation Method,ADEPCM).该算法首先将信号的稀疏域的l1-正则...
详细信息
针对压缩感知(Compressed Sensing,CS)中信号重构的l1-正则化问题中的l1-正则项非光滑,求解比较困难,提出了交替方向外点持续法(Alternating Direction Exterior Point Continuation Method,ADEPCM).该算法首先将信号的稀疏域的l1-正则化问题通过变量分裂(Variable Splitting,VS)技术转化为与之等价的约束优化问题;然后采用一步Gauss-Seidel思想,对优化问题中的变量最小化,并采用持续的思想更新罚参数,重构出信号的稀疏系数;最后进行正交反变换,重构出原始信号.并将ADEPCM用于图像重构,进行了仿真实验及对实验结果进行了分析.实验结果表明:与现有的一些重构算法相比,ADEPCM具有稍高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更快速的收敛速度.
针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据...
详细信息
针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据融合树的同时减小投影矩阵与稀疏基之间的相关度以保证数据的重构质量。仿真结果表明,该文提出的算法不仅在重构质量和能量消耗之间做到了很好的平衡,同时对于不同稀疏基下的数据也有较高的适应性。
暂无评论