具有混合记忆的自步对比学习(Self-paced Contrastive Learning,SpCL)通过集群聚类生成不同级别的伪标签来训练网络,取得了较好的识别效果,然而该方法从源域和目标域中捕获的行人数据之间存在典型的分布差异,使得训练出的网络不能准确区别目标域和源域数据域特征。针对此问题,提出了双分支动态辅助对比学习(Dynamic Auxiliary Contrastive Learning,DACL)框架。该方法首先通过动态减小源域和目标域之间的局部最大平均差异(Local Maximum Mean Discrepancy,LMMD),以有效地学习目标域的域不变特征;其次,引入广义均值(Generalized Mean,GeM)池化策略,在特征提取后再进行特征聚合,使提出的网络能够自适应地聚合图像的重要特征;最后,在3个经典行人重识别数据集上进行了仿真实验,提出的DACL与性能次之的无监督域自适应行人重识别方法相比,mAP和rank-1在Market1501数据集上分别增加了6.0个百分点和2.2个百分点,在MSMT17数据集上分别增加了2.8个百分点和3.6个百分点,在Duke数据集上分别增加了1.7个百分点和2.1个百分点。
无监督域自适应行人重识别(Unsupervised Domain Adaptation for person Re-identification, UDA-ReID)任务致力于将知识从已标记的源域数据转移到目标域。和传统的单源域自适应相比,将多源域的知识迁移到目标域是一项更具挑战性的任务...
详细信息
无监督域自适应行人重识别(Unsupervised Domain Adaptation for person Re-identification, UDA-ReID)任务致力于将知识从已标记的源域数据转移到目标域。和传统的单源域自适应相比,将多源域的知识迁移到目标域是一项更具挑战性的任务。由于领域上的差距,多数据集的简单组合只能产生有限的改进。针对此问题,提出了一种基于精确特征分布匹配和多域信息融合的多源域对比学习(exact feature distribution Matching and multi-domain information Fusion based Multi-domain Contrastive Learning, MFMCL)方法。该方法首先采用具有混合记忆的自步对比学习提取不同域数据的特征,并对提取到的特征进行构图,然后通过两层残差图卷积网络进行多域特征融合。其次,为了增强交叉分布特征、产生更丰富的信息,通过基于排序算法的精确直方图匹配来实现精确特征分布匹配,以获得更多样化的特征增强。实验表明,与目前先进的无监督域自适应行人重识别方法相比,所提出的MFMCL方法在广泛使用的行人重识别数据集Market1501、MSMT17和Duke上都取得了优越的性能。
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并...
详细信息
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并借鉴多尺度思想,采用4×4偶数卷积将得到的信息直接传递给主干部分,以获取更全面的图像信息并减少额外计算开销,同时还采用对称填充解决偶数卷积提取信息过程中产生的偏移问题。此外,在2×2偶数卷积模块后加入卷积注意力模块,结合空间和通道注意力,在提取更丰富的信息的同时几乎不增加额外开销。最后,在两个医学图像数据集上进行仿真实验,实验结果表明提出的MECAU-Net网络相对于U-Net在稍微增加计算成本的情况下,分割性能得到了较大的提升,并比其他对比网络取得更好的分割性能的同时还降低了参数量。
视频前背景分离的主要目的是从视频中提取感兴趣目标,但是由于噪声、光照变化等的影响使其仍是计算机视觉等领域最具有挑战性的任务之一。截断核范数(truncated nuclear norm,TNN)算法是一种经典的鲁棒主成分分析(robust principal comp...
详细信息
视频前背景分离的主要目的是从视频中提取感兴趣目标,但是由于噪声、光照变化等的影响使其仍是计算机视觉等领域最具有挑战性的任务之一。截断核范数(truncated nuclear norm,TNN)算法是一种经典的鲁棒主成分分析(robust principal component analysis,RPCA)算法,被广泛地应用于视频前背景分离。但是,该算法中的截断核范数对传统鲁棒主成分分析中的秩函数逼近度不高,导致其稳定性不强,对一些复杂场景下的视频前背景分离精度不高。针对该问题,本文提出了一种改进的截断核范数(improved truncated nuclear norm,ITNN)算法。该算法首先采用非凸γ范数替代TNN模型中的核范数,并分析了相对于核范数而言,非凸γ范数对秩函数具有更高的逼近度,同时提出了该算法所对应的模型;其次,为了求解提出的模型,本文引入了广义交替方向乘子法(generalized alternating direction method of multipliers,GADMM)对该模型进行求解;最后,将提出的ITNN算法应用于多个公共视频的前背景分离实验中,并通过展示提取不同视频的前景效果,从视觉角度验证了ITNN算法的有效性。同时,计算提出算法和对比算法提取的视频前景的F-measure值,从量化的角度进一步验证了ITNN算法的有效性。另外,实验还记录了各算法的视频前背景分离的运行时间,验证了ITNN算法的效率。总之,本文通过实验验证了提出的ITNN算法在视频前背景分离中的有效性和优越性。
暂无评论