基于迫零准则(Zero Forcing,ZF)的波束成形和基于最小均方误差(Minimum Mean Square Error,MMSE)的波束成形是应用广泛的两种波束成形预编码方式。但是,在大规模MIMO场景下,发送端和接收端的天线数量较大,在应用ZF和MMSE两种预编码方法...
详细信息
基于迫零准则(Zero Forcing,ZF)的波束成形和基于最小均方误差(Minimum Mean Square Error,MMSE)的波束成形是应用广泛的两种波束成形预编码方式。但是,在大规模MIMO场景下,发送端和接收端的天线数量较大,在应用ZF和MMSE两种预编码方法时,对矩阵的求逆计算变得尤为复杂。文中提出了一种基于波束域降维的波束成形方法来降低预编码计算的复杂度,通过引入波束域信道矩阵的概念,对维度较大的全维信道矩阵进行等效分解,再对分解后的降维矩阵分别做预编码,降低了波束成形预编码计算的复杂度。最后通过仿真验证了该方案的可行性。
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并...
详细信息
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并借鉴多尺度思想,采用4×4偶数卷积将得到的信息直接传递给主干部分,以获取更全面的图像信息并减少额外计算开销,同时还采用对称填充解决偶数卷积提取信息过程中产生的偏移问题。此外,在2×2偶数卷积模块后加入卷积注意力模块,结合空间和通道注意力,在提取更丰富的信息的同时几乎不增加额外开销。最后,在两个医学图像数据集上进行仿真实验,实验结果表明提出的MECAU-Net网络相对于U-Net在稍微增加计算成本的情况下,分割性能得到了较大的提升,并比其他对比网络取得更好的分割性能的同时还降低了参数量。
无监督域自适应行人重识别(Unsupervised Domain Adaptation for person Re-identification, UDA-ReID)任务致力于将知识从已标记的源域数据转移到目标域。和传统的单源域自适应相比,将多源域的知识迁移到目标域是一项更具挑战性的任务...
详细信息
无监督域自适应行人重识别(Unsupervised Domain Adaptation for person Re-identification, UDA-ReID)任务致力于将知识从已标记的源域数据转移到目标域。和传统的单源域自适应相比,将多源域的知识迁移到目标域是一项更具挑战性的任务。由于领域上的差距,多数据集的简单组合只能产生有限的改进。针对此问题,提出了一种基于精确特征分布匹配和多域信息融合的多源域对比学习(exact feature distribution Matching and multi-domain information Fusion based Multi-domain Contrastive Learning, MFMCL)方法。该方法首先采用具有混合记忆的自步对比学习提取不同域数据的特征,并对提取到的特征进行构图,然后通过两层残差图卷积网络进行多域特征融合。其次,为了增强交叉分布特征、产生更丰富的信息,通过基于排序算法的精确直方图匹配来实现精确特征分布匹配,以获得更多样化的特征增强。实验表明,与目前先进的无监督域自适应行人重识别方法相比,所提出的MFMCL方法在广泛使用的行人重识别数据集Market1501、MSMT17和Duke上都取得了优越的性能。
具有混合记忆的自步对比学习(Self-paced Contrastive Learning,SpCL)通过集群聚类生成不同级别的伪标签来训练网络,取得了较好的识别效果,然而该方法从源域和目标域中捕获的行人数据之间存在典型的分布差异,使得训练出的网络不能准确区别目标域和源域数据域特征。针对此问题,提出了双分支动态辅助对比学习(Dynamic Auxiliary Contrastive Learning,DACL)框架。该方法首先通过动态减小源域和目标域之间的局部最大平均差异(Local Maximum Mean Discrepancy,LMMD),以有效地学习目标域的域不变特征;其次,引入广义均值(Generalized Mean,GeM)池化策略,在特征提取后再进行特征聚合,使提出的网络能够自适应地聚合图像的重要特征;最后,在3个经典行人重识别数据集上进行了仿真实验,提出的DACL与性能次之的无监督域自适应行人重识别方法相比,mAP和rank-1在Market1501数据集上分别增加了6.0个百分点和2.2个百分点,在MSMT17数据集上分别增加了2.8个百分点和3.6个百分点,在Duke数据集上分别增加了1.7个百分点和2.1个百分点。
暂无评论