该文将压缩感知(CS)中信号的重构问题归结为求解l0-正则化问题,针对l0-正则化问题求解比较困难,提出了快速交替方向乘子法(FADMM)。该算法首先将信号的稀疏域的l0-正则化问题通过变量分裂技术转化为约束优化问题;然后引入乘子函数,采用一步Gauss-Seidel思想,对优化问题中的变量极小化;为了加快算法的收敛速度,对变量进行了二次更新,并更新了乘子;最后进行反正交变换,实现对原始信号的重构。将FADMM应用于含噪声图像的重构,进行了仿真实验及对实验结果进行了分析。实验结果表明:FADMM具有更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更快速的收敛速度。
该文提出了一种基于分簇的无线多媒体传感器网络(WMSNs)数据聚合方案(Cluster-based Data Aggregation Algorithm,CDAA)。利用新的分簇方法和数据聚合策略,CDAA可以有效延长网络生命期。根据多媒体节点数据采集的方向性和节点剩余能耗,...
详细信息
该文提出了一种基于分簇的无线多媒体传感器网络(WMSNs)数据聚合方案(Cluster-based Data Aggregation Algorithm,CDAA)。利用新的分簇方法和数据聚合策略,CDAA可以有效延长网络生命期。根据多媒体节点数据采集的方向性和节点剩余能耗,该文提出新的无线多媒体传感器网络的分簇方法,并基于该分簇方法进行网内多媒体数据聚合。仿真结果表明,该方法能够有效减少冗余数据的传送,与LEACH,PEGASIS等传统WSNs路由协议和针对WMSNs的AntSensNet协议相比,在能耗均衡和节能方面表现出更好的性能。
暂无评论