在协作频谱感知网络中,设备故障、信道阴影衰落和噪声等会导致频谱感知器(如手机、平板等)发送的信息不可靠,而恶意用户在协作频谱感知网络中,也会发送错误的感知信息以混淆视听,干扰诚实用户的判决结果。不可靠消息在邻居用户间的传递必将导致感知结果产生偏差和错误,大大降低了协作频谱感知的效率。为解决上述问题,本文将置信传播算法和信誉模型相结合,提出一种基于次用户分组的频谱感知数据伪造(SSDF,Spectrum Sensing Data Falsification)攻击防御方案。该方案分两个阶段对不可靠信息进行过滤:首先,在频谱感知阶段,通过置信传播算法对次用户进行分组,过滤掉因设备故障等因素产生的不可靠用户,剩余用户则视为正常工作用户进行数据融合。然后,在数据融合阶段,根据以信誉值作为权重因子的置信传播算法来计算最终的判决值。本文所提方案分别在感知阶段和融合阶段采取了防御措施,可有效地过滤网络中的不可靠信息,减小恶劣的频谱环境对次用户感知结果的影响。仿真结果表明,本文所提方案迭代次数少、收敛快,有效地减弱了SSDF攻击带来的损害,提高了感知结果的准确性、增强了认知无线网络的安全性。
本文提出了一种基于数据驱动字典和过完备稀疏表示的自适应语音增强方法。首先在训练阶段采用干净语音基于K奇异值分解(K—singular value decomposition,K-SVD)算法训练过完备字典,然后在测试阶段根据含噪语音的噪声方差自适应选择最...
详细信息
本文提出了一种基于数据驱动字典和过完备稀疏表示的自适应语音增强方法。首先在训练阶段采用干净语音基于K奇异值分解(K—singular value decomposition,K-SVD)算法训练过完备字典,然后在测试阶段根据含噪语音的噪声方差自适应选择最优的阈值,采用正交匹配追踪算法对含噪语音信号在过完备字典上进行稀疏分解,最后利用系数稀疏表示重构语音信号,从而达到语音增强的目。该方法不像传统语音增强方法那样减少或消去噪声,而是从字典中选取适当的原子表示纯净信号,从而把纯净信号从含噪信号中分离出来。对白噪声和有色噪声环境下重构语音进行了主客观评价。仿真结果显示:该方法能有效去除加性噪声,并且改善了语音质量。
暂无评论