为了减小宏用户和家庭基站之间的干扰,有效分配频谱,本文提出了基于图论着色的分簇信道分配算法。该算法在保证满足宏用户信干噪比(signal-to-interference plus noise ratio,SINR)要求的前提下确定每个家庭基站可用的子信道集,再根据...
详细信息
为了减小宏用户和家庭基站之间的干扰,有效分配频谱,本文提出了基于图论着色的分簇信道分配算法。该算法在保证满足宏用户信干噪比(signal-to-interference plus noise ratio,SINR)要求的前提下确定每个家庭基站可用的子信道集,再根据构造的家庭基站系统干扰图,动态地给每个用户分配所有可用的频谱资源。本文分别构建无向干扰图和有向权重干扰图,使用了一种基于簇的改进算法,在保证宏用户信干噪比的条件下,尽量提高家庭基站的吞吐量。仿真结果表明,本文算法可以降低宏用户和家庭基站的中断率,同时频谱效率得到提高。
在协作频谱感知网络中,设备故障、信道阴影衰落和噪声等会导致频谱感知器(如手机、平板等)发送的信息不可靠,而恶意用户在协作频谱感知网络中,也会发送错误的感知信息以混淆视听,干扰诚实用户的判决结果。不可靠消息在邻居用户间的传递必将导致感知结果产生偏差和错误,大大降低了协作频谱感知的效率。为解决上述问题,本文将置信传播算法和信誉模型相结合,提出一种基于次用户分组的频谱感知数据伪造(SSDF,Spectrum Sensing Data Falsification)攻击防御方案。该方案分两个阶段对不可靠信息进行过滤:首先,在频谱感知阶段,通过置信传播算法对次用户进行分组,过滤掉因设备故障等因素产生的不可靠用户,剩余用户则视为正常工作用户进行数据融合。然后,在数据融合阶段,根据以信誉值作为权重因子的置信传播算法来计算最终的判决值。本文所提方案分别在感知阶段和融合阶段采取了防御措施,可有效地过滤网络中的不可靠信息,减小恶劣的频谱环境对次用户感知结果的影响。仿真结果表明,本文所提方案迭代次数少、收敛快,有效地减弱了SSDF攻击带来的损害,提高了感知结果的准确性、增强了认知无线网络的安全性。
暂无评论