随着物联网(Internet of Things,IoT)设备的普及,使用入侵检测来保护IoT设备免受恶意攻击至关重要。但是,IoT的数据稀缺性限制了传统入侵检测方法的效果。同时,现有的基于域自适应的入侵检测方法对齐方式粗糙,忽略了内在语义属...
详细信息
随着物联网(Internet of Things,IoT)设备的普及,使用入侵检测来保护IoT设备免受恶意攻击至关重要。但是,IoT的数据稀缺性限制了传统入侵检测方法的效果。同时,现有的基于域自适应的入侵检测方法对齐方式粗糙,忽略了内在语义属性的转移,降低了特征的可区分性。为解决上述问题,提出了一种基于Transformer的域自适应物联网入侵检测(Transformer-Based Domain-Adaptive IoT Intrusion Detection,TDAIID)模型,从域间、类间和样本间三个层次对齐互联网入侵(Network Intrusion,NI)域和物联网入侵(Internet of Things Intrusion,II)域。交叉注意力机制聚焦于NI源域和II目标域中相同类别样本之间的相似特征,实现样本级别的域特征对齐;多重几何语义对齐从域级和类级两个角度进行语义对齐,有助于交叉注意力机制学习更丰富、更准确的源NI域知识。此外,为了充分挖掘未标记II目标域的潜力,从几何角度提出了一种动态中心感知伪标签算法,提高伪标签标记的准确性,有效降低错误分配伪标签造成的负迁移。在多个常用入侵检测数据集上的综合实验表明,TDAIID模型的性能优于当前先进的基线模型。
暂无评论