针对压缩感知(Compressed Sensing,CS)中信号重构的l1-正则化问题中的l1-正则项非光滑,求解比较困难,提出了交替方向外点持续法(Alternating Direction Exterior Point Continuation Method,ADEPCM).该算法首先将信号的稀疏域的l1-正则...
详细信息
针对压缩感知(Compressed Sensing,CS)中信号重构的l1-正则化问题中的l1-正则项非光滑,求解比较困难,提出了交替方向外点持续法(Alternating Direction Exterior Point Continuation Method,ADEPCM).该算法首先将信号的稀疏域的l1-正则化问题通过变量分裂(Variable Splitting,VS)技术转化为与之等价的约束优化问题;然后采用一步Gauss-Seidel思想,对优化问题中的变量最小化,并采用持续的思想更新罚参数,重构出信号的稀疏系数;最后进行正交反变换,重构出原始信号.并将ADEPCM用于图像重构,进行了仿真实验及对实验结果进行了分析.实验结果表明:与现有的一些重构算法相比,ADEPCM具有稍高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更快速的收敛速度.
该文提出了一种基于分簇的无线多媒体传感器网络(WMSNs)数据聚合方案(Cluster-based Data Aggregation Algorithm,CDAA)。利用新的分簇方法和数据聚合策略,CDAA可以有效延长网络生命期。根据多媒体节点数据采集的方向性和节点剩余能耗,...
详细信息
该文提出了一种基于分簇的无线多媒体传感器网络(WMSNs)数据聚合方案(Cluster-based Data Aggregation Algorithm,CDAA)。利用新的分簇方法和数据聚合策略,CDAA可以有效延长网络生命期。根据多媒体节点数据采集的方向性和节点剩余能耗,该文提出新的无线多媒体传感器网络的分簇方法,并基于该分簇方法进行网内多媒体数据聚合。仿真结果表明,该方法能够有效减少冗余数据的传送,与LEACH,PEGASIS等传统WSNs路由协议和针对WMSNs的AntSensNet协议相比,在能耗均衡和节能方面表现出更好的性能。
暂无评论