为了克服单视图三维人体重建中出现的伪影及肢体残缺现象,提出了一种基于参数模型和法线推理的三维人体隐式重建算法(Parametric⁃Model and Normal Inference,PMNI),该方法能够从单一RGB图像重建出包含服装的三维人体。网络的输入仅为...
详细信息
为了克服单视图三维人体重建中出现的伪影及肢体残缺现象,提出了一种基于参数模型和法线推理的三维人体隐式重建算法(Parametric⁃Model and Normal Inference,PMNI),该方法能够从单一RGB图像重建出包含服装的三维人体。网络的输入仅为一张包含人物全身的RGB图像,首先基于图卷积神经网络预测对应的SMPL参数模型,接着基于条件GAN(Generative Adversarial Networks)网络生成人物的后视图像,并分别从前后视图中提取法线特征,最后将它们作为深度隐式函数的额外参数辅助训练。实验结果表明,相较于传统方法,该方法有效提升了重建结果的整体质量和表面细节。得益于参数体和法线作为先验,该方法也可以很好地处理一些复杂人体姿态。
本文提出了一种将特征生成和长短期记忆(long short term memory, LSTM)模型相结合的网络流量分类方法。该方法采用矩阵乘法特征生成方式,分析对比了不同特征生成方法的分类性能。通过实验比较了原数据和特征数据在分类问题上的准确性,...
详细信息
本文提出了一种将特征生成和长短期记忆(long short term memory, LSTM)模型相结合的网络流量分类方法。该方法采用矩阵乘法特征生成方式,分析对比了不同特征生成方法的分类性能。通过实验比较了原数据和特征数据在分类问题上的准确性,并比较了卷积神经网络(convolutional neural network, CNN)和本文方法用于网络流分类的效果。在统计特征时采用核函数,使其可以适应LSTM输入维度,获得更佳的分类效果。对真实网络流数据的实验结果表明,本文方法在细分类中的准确度可达93.9%,而在粗分类任务中可达99.2%,其性能明显优于现有其他分类方法。
暂无评论