移动边缘计算(Mobile Edge Computing,MEC)在网络边缘为用户提供计算服务,有效降低了数据传输和处理时延,成为第五代移动通信系统(the 5th Generation Mobile Communication System,5G)低时延通信的关键技术。如何优化设计卸载策略以保...
详细信息
移动边缘计算(Mobile Edge Computing,MEC)在网络边缘为用户提供计算服务,有效降低了数据传输和处理时延,成为第五代移动通信系统(the 5th Generation Mobile Communication System,5G)低时延通信的关键技术。如何优化设计卸载策略以保证低时延、低能耗和高可靠通信是MEC面临的一个极具挑战性的任务。为此,文中针对频谱和能量双受限的多用户多任务MEC系统场景,提出可最小化系统能耗的多用户任务非正交多址(Non⁃Orthogonal Multiple Access,NOMA)协作中继卸载计算方案。考虑多用户协作中继场景并允许多任务基于NOMA实现并行卸载传输,在时延约束下建立多用户任务卸载计算能耗最小化问题;利用拉格朗日对偶法求解该问题,得到最优的基于中继的任务卸载传输方案和用户功率分配方案。仿真结果表明,所提方案能够有效降低MEC系统的多任务卸载计算能耗。
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中...
详细信息
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。
暂无评论