一般的高维多目标进化算法无法有效处理不同类型的Pareto前沿.针对这一情况,提出一种基于种群关联策略和强化解集准则的高维多目标进化算法(many-objective evolutionary algorithm based on population association strategy and enhan...
详细信息
一般的高维多目标进化算法无法有效处理不同类型的Pareto前沿.针对这一情况,提出一种基于种群关联策略和强化解集准则的高维多目标进化算法(many-objective evolutionary algorithm based on population association strategy and enhanced solution set criterion,MaOEA/PAS-ESC).该算法在环境选择中采用种群关联策略(population association strategy,PAS)和强化解集准则(enhanced solution set criterion,ESC)协同指导种群进化.PAS利用解与参考向量的角度和欧氏距离以及种群中解之间的距离构建角度与距离联合函数(joint function of angle and distance,JFAD),选择多样性良好的解,然后ESC利用参考点与种群间的联系组成适应度函数,选择收敛性良好的解,以共同达到有效平衡多样性和收敛性的目的.实验结果表明,采用MaOEA/PAS-ESC处理高维多目标优化问题具有更强的竞争性能,而且提高了处理不同类型Pareto前沿的能力.
暂无评论