基于模型的诊断问题在人工智能领域内一直备受关注,将诊断问题转换成SAT(Satisfiable)问题成为解决基于模型诊断问题的一个重要方法.基于目前高效诊断方法 LLBRS-Tree(Last-Level Based on Reverse Search-Tree)的研究,本文提出电路分...
详细信息
基于模型的诊断问题在人工智能领域内一直备受关注,将诊断问题转换成SAT(Satisfiable)问题成为解决基于模型诊断问题的一个重要方法.基于目前高效诊断方法 LLBRS-Tree(Last-Level Based on Reverse Search-Tree)的研究,本文提出电路分块诊断方法 ACDIAG(Abstract Circuit Diagnosis)方法,对电路进行分块来缩减电路规模,利用LLBRS-Tree方法对分块后抽象电路求得极小块诊断解;提出诊断解拓展方法,结合分块后电路结构特征对每个极小块诊断解进行直接扩展得到极小诊断解,避免对抽象电路还原后才能得到所有解的问题.
鉴于传统的异质信息网络通常存在的高维稀疏性缺点,首先提出将异质信息网络的高维顶点嵌入低维向量空间的无监督学习模型——基于生成对抗网络的异质网络表征学习(heterogeneous network representation learning based on generative a...
详细信息
鉴于传统的异质信息网络通常存在的高维稀疏性缺点,首先提出将异质信息网络的高维顶点嵌入低维向量空间的无监督学习模型——基于生成对抗网络的异质网络表征学习(heterogeneous network representation learning based on generative adversarial network,HNRL-GAN)模型;然后分析HNRL-GAN模型中的不足之处,进一步提出改进 后的基于生成对抗网络的增强版异质网络表征学习(heterogeneous network representation learning based on generative adversarial network plus plus,HNRL-GAN++)模型;最后 分别在DBLP、Yelp、Aminer等数据集中使用HNRL-GAN模型和HNRL-GAN++模型进行节点分类和节点聚类等实验以测试模型的有效性。实验结果表明:1)HNRL-GAN模型和HNRL-GAN++模型都实现了将异质信息网络中的高维稀疏节点表示为低维稠密向量这一目标;2)相较于HNRL-GAN模型,HNRL-GAN++模型在保留高维空间中网络结构信息和语义信息等方面拥有更好的性能。
暂无评论