Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...
详细信息
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
Disintegration or redispersion of supported sintered gold nanoparticles (Au NPs) in the presence of alkyl halide can give catalyst regeneration or redispersion of sintered Au catalysts. The selectivity of alkyl hali...
详细信息
Disintegration or redispersion of supported sintered gold nanoparticles (Au NPs) in the presence of alkyl halide can give catalyst regeneration or redispersion of sintered Au catalysts. The selectivity of alkyl halides, temperature and size distributions were investigated to elucidate the redispersion of Au NPs during halide-induced decomposition. This study proved that the alkyl halide induced the redispersion of sintered Au NPs which depended on the R-X (X = I, Br, CI) bond dissociation energy (BDE) and thus provided a simple descriptor for the regeneration of inactive supported Au cata- lysts. A correlation between the BDE of R-X and dispersion efficiency was established. The tendency for disintegration and redispersion followed the R-X BDE of the alkyl halide. Compared to alkyl chlorides and bromides, iodides were more efficient for redispersing sintered Au NPs. As a descriptor, the BDE of R-I played a crucial role in particle redispersion. These findings provided in- sights into the mechanism of organic halide-induced Au NP disintegration and the effect of the hal- ide type on the redispersion of sintered catalysts.
暂无评论