针对现有图像数据集存在的隐私保护需求,提出一种图像数据集隐私保护场景及该场景下隐私保护的图像替代数据生成方法。该场景利用经隐私保护方法处理后的替代图像数据集取代原始图像数据集,其中替代图像与原始图像一一对应,人类无法识别替代图像所属类别,替代图像可训练现有的深度学习图像分类算法,且具有较好的分类效果。同时针对上述场景,改进了基于投影梯度下降(PGD:Project Gradient Descent)攻击的数据隐私保护方法,将原始PGD攻击目标由标签改为图像,即图像对图像的攻击,并使用经过对抗训练的鲁棒模型进行图像对图像攻击作为替代数据的生成方法。在标准测试集上,替代后的CIFAR(Canadian Institute For Advanced Research 10)数据集和CINIC数据集在图像分类任务上分别取得了87.15%和74.04%的测试正确率。实验结果表明,该方法能在保证替代数据集对人类隐私性的前提下,生成原始数据集的替代数据集,并保证现有方法在该数据集上的分类性能。
近年来,深度强化学习在复杂控制任务中取得了令人瞩目的效果,然而由于超参数的高敏感性和收敛性难以保证等原因,严重影响了其对现实问题的适用性.元启发式算法作为一类模拟自然界客观规律的黑盒优化方法,虽然能够有效避免超参数的敏感性,但仍存在无法适应待优化参数量规模巨大和样本使用效率低等问题.针对以上问题,提出融合引力搜索的双延迟深度确定策略梯度方法(twin delayed deep deterministic policy gradient based on gravitational search algorithm,GSA-TD3).该方法融合两类算法的优势:一是凭借梯度优化的方式更新策略,获得更高的样本效率和更快的学习速度;二是将基于万有引力定律的种群更新方法引入到策略搜索过程中,使其具有更强的探索性和更好的稳定性.将GSA-TD3应用于一系列复杂控制任务中,实验表明,与前沿的同类深度强化学习方法相比,GSA-TD3在性能上具有显著的优势.
暂无评论